935 research outputs found
Treatment of Advanced Emphysema with Emphysematous Lung Sealant (AeriSeal (R))
Background: This report summarizes initial tests of an emphysematous lung synthetic polymer sealant (ELS) designed to reduce lung volume in patients with advanced emphysema. Objectives: The primary study objective was to define a therapeutic strategy to optimize treatment safety and effectiveness. Methods: ELS therapy was administered bronchoscopically to 25 patients with heterogeneous emphysema in an open-label, noncontrolled study at 6 centers in Germany. Treatment was performed initially at 2-4 subsegments. After 12 weeks, patients were eligible for repeat therapy to a total of 6 sites. Safety and efficacy were assessed after 6 months. Responses were evaluated in terms of changes from baseline in lung physiology, functional capacity, and health-related quality of life. Follow-up is available for 21 of 25 patients. Results: Treatment was well tolerated. There were no treatment-related deaths (i.e. within 90 days of treatment), and an acceptable short-and long-term safety profile. Physiological and clinical benefits were observed at 24 weeks. Efficacy responses were better among Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage III patients {[}n = 14; change in residual volume/total lung capacity (Delta RV/TLC) = -7.4 +/- 10.3%; Delta forced expiratory volume in 1 s (Delta FEV(1)) = +15.9 +/- 22.6%; change in forced vital capacity (Delta FVC) = +24.1 +/- 22.7%; change in carbon monoxide lung diffusion capacity (Delta DLCO) = +19.3 +/- 34.8%; change in 6-min walk test (Delta 6MWD) = +28.7 +/- 59.6 m; change in Medical Research Council Dyspnea (Delta MRCD) score = -1.0 +/- 1.04 units; change in St. George's Respiratory Questionnaire (Delta SGRQ) score = -9.9 +/- 15.3 units] than for GOLD stage IV patients (n = 7; Delta RV/TLC = -0.5 +/- 6.4%; Delta FEV 1 = +2.3 +/- 12.3%; Delta FVC = +2.6 +/- 21.1%; Delta DLCO = -2.8 +/- 17.2%; Delta 6MWD = +28.3 +/- 58.4 m; Delta MRCD = 0.3 +/- 0.81 units; Delta SGRQ = -6.7 +/- 7.0 units). Conclusions: ELS therapy shows promise for treating patients with advanced heterogeneous emphysema. Additional studies to assess responses in a larger cohort with a longer follow-up are warranted. Copyright (C) 2011 S. Karger AG, Base
Modeling the effects of concentration of solid nanoparticles in liquid feedstock injection on high-velocity suspension flame spray process
This paper presents the effects of the concentration of solid nanoparticles in the liquid feedstock injection on the
high-velocity suspension flame spray (HVSFS) process. Four different concentrations of solid nanoparticles in suspension
droplets with various droplet diameters are used to study gas dynamics, vaporization rate, and secondary breakup. Two types of
injections, viz. surface and group, are used. The group-type injection increases the efficiency of droplet disintegration and the
evaporation process and reduces the gas cooling. The initiation of the fragmentation process is difficult for small droplets carrying
a high concentration of nanoparticles. Also, smaller droplets undergo rapid vaporization, leaving clogs of nanoparticles in the
middle of the barrel. For larger droplets, severe fragmentation occurs inside the combustion chamber. For a higher concentration
of nanoparticles, droplets exit the gun without complete evaporation. The results suggest that, in coating applications involving a
higher concentration of nanoparticles, smaller droplet sizes are preferred
Steering the structure and selectivity of CO<sub>2</sub> electroreduction catalysts by potential pulses
Convoluted selectivity trends and a missing link between reaction product distribution and catalyst properties hinder practical applications of the electrochemical CO2 reduction reaction (CO2RR) for multicarbon product generation. Here we employ operando X-ray absorption and X-ray diffraction methods with subsecond time resolution to unveil the surprising complexity of catalysts exposed to dynamic reaction conditions. We show that by using a pulsed reaction protocol consisting of alternating working and oxidizing potential periods that dynamically perturb catalysts derived from Cu2O nanocubes, one can decouple the effect of the ensemble of coexisting copper species on the product distribution. In particular, an optimized dynamic balance between oxidized and reduced copper surface species achieved within a narrow range of cathodic and anodic pulse durations resulted in a twofold increase in ethanol production compared with static CO2RR conditions. This work thus prepares the ground for steering catalyst selectivity through dynamically controlled structural and chemical transformations
Surface layering of liquids: The role of surface tension
Recent measurements show that the free surfaces of liquid metals and alloys
are always layered, regardless of composition and surface tension; a result
supported by three decades of simulations and theory. Recent theoretical work
claims, however, that at low enough temperatures the free surfaces of all
liquids should become layered, unless preempted by bulk freezing. Using x-ray
reflectivity and diffuse scattering measurements we show that there is no
observable surface-induced layering in water at T=298 K, thus highlighting a
fundamental difference between dielectric and metallic liquids. The
implications of this result for the question in the title are discussed.Comment: 5 pages, 4 figures, to appear in Phys. Rev. B. 69 (2004
Surface Structure of Liquid Metals and the Effect of Capillary Waves: X-ray Studies on Liquid Indium
We report x-ray reflectivity (XR) and small angle off-specular diffuse
scattering (DS) measurements from the surface of liquid Indium close to its
melting point of C. From the XR measurements we extract the surface
structure factor convolved with fluctuations in the height of the liquid
surface. We present a model to describe DS that takes into account the surface
structure factor, thermally excited capillary waves and the experimental
resolution. The experimentally determined DS follows this model with no
adjustable parameters, allowing the surface structure factor to be deconvolved
from the thermally excited height fluctuations. The resulting local electron
density profile displays exponentially decaying surface induced layering
similar to that previously reported for Ga and Hg. We compare the details of
the local electron density profiles of liquid In, which is a nearly free
electron metal, and liquid Ga, which is considerably more covalent and shows
directional bonding in the melt. The oscillatory density profiles have
comparable amplitudes in both metals, but surface layering decays over a length
scale of \AA for In and \AA for Ga. Upon controlled
exposure to oxygen, no oxide monolayer is formed on the liquid In surface,
unlike the passivating film formed on liquid Gallium.Comment: 9 pages, 5 figures; submitted to Phys. Rev.
The Energy Spectrum of TeV Gamma-Rays from the Crab Nebula as measured by the HEGRA system of imaging air Cherenkov telescopes
The Crab Nebula has been observed by the HEGRA (High-Energy Gamma-Ray
Astronomy) stereoscopic system of imaging air Cherenkov telescopes (IACTs) for
a total of about 200 hrs during two observational campaigns: from September
1997 to March 1998 and from August 1998 to April 1999. The recent detailed
studies of system performance give an energy threshold and an energy resolution
for gamma-rays of 500 GeV and ~ 18%, respectively. The Crab energy spectrum was
measured with the HEGRA IACT system in a very broad energy range up to 20 TeV,
using observations at zenith angles up to 65 degrees. The Crab data can be
fitted in the energy range from 1 to 20 TeV by a simple power-law, which yields
dJg/dE = (2.79+/-0.02 +/- 0.5) 10^{-7} E^{-2.59 +/- 0.03 +/- 0.05}, ph m^{-2}
s^{-1} TeV^{-1} The Crab Nebula energy spectrum, as measured with the HEGRA
IACT system, agrees within 15% in the absolute scale and within 0.1 units in
the power law index with the latest measurements by the Whipple, CANGAROO and
CAT groups, consistent within the statistical and systematic errors quoted by
the experiments. The pure power-law spectrum of TeV gamma-rays from the Crab
Nebula constrains the physics parameters of the nebula environment as well as
the models of photon emission.Comment: to appear in ApJ, 29 pages, 6 figure
Correlated intense X-ray and TeV activity of Mrk~501 in 1998 June
We present exactly simultaneous X-ray and TeV monitoring with {\it RXTE} and
HEGRA of the TeV blazar Mrk 501 during 15 days in 1998 June. After an initial
period of very low flux at both wavelengths, the source underwent a remarkable
flare in the TeV and X-ray energy bands, lasting for about six days and with a
larger amplitude at TeV energies than in the X-ray band. At the peak of the TeV
flare, rapid TeV flux variability on sub-hour timescales is found. Large
spectral variations are observed at X-rays, with the 3--20 keV photon index of
a pure power law continuum flattening from to on a
timescale of 2--3 days. This implies that during the maximum of the TeV
activity, the synchrotron peak shifted to energies keV, a behavior
similar to that observed during the longer-lasting, more intense flare in 1997
April. The TeV spectrum during the flare is described by a power law with
photon index and an exponential cutoff at 4 TeV; an
indication for spectral softening during the flare decay is observed in the TeV
hardness ratios. Our results generally support a scenario where the TeV photons
are emitted via inverse Compton scattering of ambient seed photons by the same
electron population responsible for the synchrotron X-rays. The simultaneous
spectral energy distributions (SEDs) can be fit with a one-zone
synchrotron-self Compton model assuming a substantial increase of the magnetic
field and the electron energy by a factor of 3 and 10, respectively.Comment: Accepted for publication in ApJ, Part
Investigation of Metallized and Nonmetallized Hydroxyl Terminated Polybutadiene/Hydrogen Peroxide Hybrid Rockets
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77070/1/AIAA-22091-612.pd
- …