5 research outputs found

    Critical Mindset as a 21st Century Skill: Challenging Heteronormative Assumptions through Teaching High School Biology

    Get PDF
    This study focuses on the lived experience of an experienced biology teacher and their desire/ability to develop a gender-inclusive curriculum. Grounding on a narrative inquiry methodology, the narratives of our genderqueer high school biology teacher illustrate their beliefs about biology teaching and advancing students’ knowledge in ways that empower the students. The study highlights a need to teach biology in a way that develops students\u27 critical mindset as part of a 21st-century skill by emphasizing and weaving sociopolitical issues into their curriculum

    Characterizing biofilms and their associated biosignatures in an Arctic hypersaline cold spring Mars analog

    No full text
    The last surface-level aqueous environments on Mars were likely sulfurous brines that formed as the climate cooled and large bodies of water receded during the transition from the wet Noachian to the dry Hesperian (4.1 – 3.0 Gya). To understand the diversity of microorganisms that could have inhabited such environments and their associated biosignatures, we turn to analogous environments on Earth. Here we investigated biofilm communities and their associated biosignatures at Gypsum Hill, (GH), a perennial cold spring system located at nearly 80°N on Axel Heiberg Island in the Canadian high Arctic. The biofilms develop during the summer months alongside the oligotrophic and sulphur rich GH brines and spread out along the flood plains formed by meltwater and spring run-off. Our objective was to link the microbial community structure of the biofilms to geochemical changes across the GH site as an analog to the micro-niches that could have formed during the recession of an ancient Martian Ocean. We collected 14 morphologically distinct biofilms over two field season and found that minor variations in chemistry between proximal sites impacted community structure. 16S amplicon sequencing revealed that biofilms closest to outflow channels were dominated by sulfur oxidizing bacteria, suggesting that primary production may be driven by chemolithoautotrophy. The community structure shifted towards more heterotrophic and phototrophic populations the further the biofilms appeared from a spring source. Microbial eukaryotes at the GH site were investigated for the first time through 18S sequencing with diatoms and photoautotrophic algae dominating all biofilms. Lastly, we linked the biofilm communities to potential biosignatures by examining lipid profiles to help guide the search and identification of potential remnants of hypothetical ancient Martian life.

    Behavioral adjustments of a pipefish to bacterial Vibrio challenge

    No full text
    Animals can profit from increasing temperatures by prolonged breeding seasons and faster growth rates. However, these fitness benefits are traded off against higher parasite load and increased virulence of temperature-sensitive pathogens. In thermally stratified habitats, behavioral plasticity can allow hosts to choose the optimal temperature to enhance individual fitness and to escape parasite pressure. To test this idea, we performed a temperature choice experiment with the host-parasite system of the sex-role reversed broad-nosed pipefish (Syngnathus typhle) and its bacterial pathogen Vibrio spp. In this species, pregnant males are expected to face a trade-off between shortening their brooding period in warm water and decreasing the effect of the infection in cold water. We found that exposure to Vibrio changed the temperature preference for both pregnant and nonpregnant males, as well as females compared to nonchallenged fish that tended to prefer warm water. This study shows that behavioral plasticity is one option for avoidance of higher bacterial prevalence, as expected due to rising ocean temperatures
    corecore