7 research outputs found

    Congenital thrombotic thrombocytopenic purpura caused by new compound heterozygous mutations of the ADAMTS13 gene

    No full text
    Upshaw-Schulman syndrome (USS) is due to severe congenital deficiency of von Willebrand factor (VWF)-cleaving protease ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 domains, nr 13) activity resulting in the presence of unusually large forms of VWF in the circulation, causing intravascular platelet clumping and thrombotic microangiopathy. Our patient, a 26-year-old man, had attacks of thrombotic thrombocytopenic purpura (TTP) with thrombocytopenia and a urine dipstick positive for hemoglobin (4+), often as the only sign of hemolytic activity. He had ADAMTS13 activity of A) leading to p.R1123H. This case report confirms the importance of the analysis of the ADAMTS13 activity and its inhibitor in patients who have episodes of TTP, with a very low platelet count and sometimes without the classic biochemical signs of hemolysis

    Caplacizumab for Acquired Thrombotic Thrombocytopenic Purpura.

    Get PDF
    BACKGROUND Acquired thrombotic thrombocytopenic purpura (TTP) is caused by aggregation of platelets on ultralarge von Willebrand factor multimers. This microvascular thrombosis causes multiorgan ischemia with potentially life-threatening complications. Daily plasma exchange and immunosuppressive therapies induce remission, but mortality and morbidity due to microthrombosis remain high. METHODS Caplacizumab, an anti-von Willebrand factor humanized single-variable-domain immunoglobulin (Nanobody), inhibits the interaction between ultralarge von Willebrand factor multimers and platelets. In this phase 2, controlled study, we randomly assigned patients with acquired TTP to subcutaneous caplacizumab (10 mg daily) or placebo during plasma exchange and for 30 days afterward. The primary end point was the time to a response, defined as confirmed normalization of the platelet count. Major secondary end points included exacerbations and relapses. RESULTS Seventy-five patients underwent randomization (36 were assigned to receive caplacizumab, and 39 to receive placebo). The time to a response was significantly reduced with caplacizumab as compared with placebo (39% reduction in median time, P=0.005). Three patients in the caplacizumab group had an exacerbation, as compared with 11 patients in the placebo group. Eight patients in the caplacizumab group had a relapse in the first month after stopping the study drug, of whom 7 had ADAMTS13 activity that remained below 10%, suggesting unresolved autoimmune activity. Bleeding-related adverse events, most of which were mild to moderate in severity, were more common with caplacizumab than with placebo (54% of patients vs. 38%). The frequencies of other adverse events were similar in the two groups. Two patients in the placebo group died, as compared with none in the caplacizumab group. CONCLUSIONS Caplacizumab induced a faster resolution of the acute TTP episode than did placebo. The platelet-protective effect of caplacizumab was maintained during the treatment period. Caplacizumab was associated with an increased tendency toward bleeding, as compared with placebo. (Funded by Ablynx; ClinicalTrials.gov number, NCT01151423.)

    Genetic variations in complement factors in patients with congenital thrombotic thrombocytopenic purpura with renal insufficiency.

    Get PDF
    The congenital form of thrombotic thrombocytopenic purpura (TTP) is caused by genetic mutations in ADAMTS13. Some, but not all, congenital TTP patients manifest renal insufficiency in addition to microangiopathic hemolysis and thrombocytopenia. We included 32 congenital TTP patients in the present study, which was designed to assess whether congenital TTP patients with renal insufficiency have predisposing mutations in complement regulatory genes, as found in many patients with atypical hemolytic uremic syndrome (aHUS). In 13 patients with severe renal insufficiency, six candidate complement or complement regulatory genes were sequenced and 11 missense mutations were identified. One of these missense mutations, C3:p.K155Q mutation, is a rare mutation located in the macroglobulin-like 2 domain of C3, where other mutations predisposing for aHUS cluster. Several of the common missense mutations identified in our study have been reported to increase disease-risk for aHUS, but were not more common in patients with as compared to those without renal insufficiency. Taken together, our results show that the majority of the congenital TTP patients with renal insufficiency studied do not carry rare genetic mutations in complement or complement regulatory genes

    The International Hereditary Thrombotic Thrombocytopenic Purpura Registry: key findings at enrollment until 2017

    No full text
    Congenital thrombotic thrombocytopenic purpura is an autosomal recessive inherited disease with a clinically heterogeneous course and an incompletely understood genotype-phenotype correlation. In 2006, the Hereditary TTP Registry started recruitment for a study which aimed to improve the understanding of this ultra-rare disease. The objective of this study is to present characteristics of the cohort until the end of 2017 and to explore the relationship between overt disease onset and ADAMTS13 activity with emphasis on the recurring ADAMTS13 c.4143_4144dupA mutation. Diagnosis of congenital thrombotic thrombocytopenic purpura was confirmed by severely deficient ADAMTS13 activity (≤10% of normal) in the absence of a functional inhibitor and the presence of ADAMTS13 mutations on both alleles. By the end of 2017, 123 confirmed patients had been enrolled from Europe (n=55), Asia (n=52, 90% from Japan), the Americas (n=14), and Africa (n=2). First recognized disease manifestation occurred from around birth up to the age of 70 years. Of the 98 different ADAMTS13 mutations detected, c.4143_4144dupA (exon 29; p.Glu1382Argfs*6) was the most frequent mutation, present on 60 of 246 alleles. We found a larger proportion of compound heterozygous than homozygous carriers of ADAMTS13 c.4143_4144dupA with overt disease onset at < 3 months of age (50% vs. 37%), despite the fact that ADAMTS13 activity was <1% in 18 of 20 homozygous, but in only 8 of 14 compound heterozygous carriers. An evaluation of overt disease onset in all patients with an available sensitive ADAMTS13 activity assay (n=97) shows that residual ADAMTS13 activity is not the only determinant of age at first disease manifestation. Registered at clinicaltrials.gov identifier NCT01257269
    corecore