3,033 research outputs found

    Assessment of some variables affecting the blanching activity of betamethasone 17-valerate cream

    Get PDF
    The effect of concentration and occlusion time on the ability of Betnovate ® cream (betamethasone 17-valerate 0.1%) to produce skin blanching was assessed. Generally, increased concentration or occlusion time produce and increase in the degree of blanching observed, however, a plateau stage is eventually reached where no further increase of blanching occurs

    Taming the Yukawa potential singularity: improved evaluation of bound states and resonance energies

    Full text link
    Using the tools of the J-matrix method, we absorb the 1/r singularity of the Yukawa potential in the reference Hamiltonian, which is handled analytically. The remaining part, which is bound and regular everywhere, is treated by an efficient numerical scheme in a suitable basis using Gauss quadrature approximation. Analysis of resonance energies and bound states spectrum is performed using the complex scaling method, where we show their trajectories in the complex energy plane and demonstrate the remarkable fact that bound states cross over into resonance states by varying the potential parameters.Comment: 8 pages, 2 tables, 1 figure. 2 mpg videos and 1 pdf table file are available upon request from the corresponding Autho

    Lagrange-mesh calculations in momentum space

    Full text link
    The Lagrange-mesh method is a powerful method to solve eigenequations written in configuration space. It is very easy to implement and very accurate. Using a Gauss quadrature rule, the method requires only the evaluation of the potential at some mesh points. The eigenfunctions are expanded in terms of regularized Lagrange functions which vanish at all mesh points except one. It is shown that this method can be adapted to solve eigenequations written in momentum space, keeping the convenience and the accuracy of the original technique. In particular, the kinetic operator is a diagonal matrix. Observables in both configuration space and momentum space can also be easily computed with a good accuracy using only eigenfunctions computed in the momentum space. The method is tested with Gaussian and Yukawa potentials, requiring respectively a small or a great mesh to reach convergence.Comment: Extended versio

    Instability of coherent states of a real scalar field

    Full text link
    We investigate stability of both localized time-periodic coherent states (pulsons) and uniformly distributed coherent states (oscillating condensate) of a real scalar field satisfying the Klein-Gordon equation with a logarithmic nonlinearity. The linear analysis of time-dependent parts of perturbations leads to the Hill equation with a singular coefficient. To evaluate the characteristic exponent we extend the Lindemann-Stieltjes method, usually applied to the Mathieu and Lame equations, to the case that the periodic coefficient in the general Hill equation is an unbounded function of time. As a result, we derive the formula for the characteristic exponent and calculate the stability-instability chart. Then we analyze the spatial structure of the perturbations. Using these results we show that the pulsons of any amplitudes, remaining well-localized objects, lose their coherence with time. This means that, strictly speaking, all pulsons of the model considered are unstable. Nevertheless, for the nodeless pulsons the rate of the coherence breaking in narrow ranges of amplitudes is found to be very small, so that such pulsons can be long-lived. Further, we use the obtaned stability-instability chart to examine the Affleck-Dine type condensate. We conclude the oscillating condensate can decay into an ensemble of the nodeless pulsons.Comment: 11 pages, 8 figures, submitted to Physical Review

    Dynamical Casimir effect in oscillating media

    Full text link
    We show that oscillations of a homogeneous medium with constant material coefficients produce pairs of photons. Classical analysis of an oscillating medium reveals regions of parametric resonance where the electromagnetic waves are exponentially amplified. The quantum counterpart of parametric resonance is an exponentially growing number of photons in the same parameter regions. This process may be viewed as another manifestation of the dynamical Casimir effect. However, in contrast to the standard dynamical Casimir effect, photon production here takes place in the entire volume and is not due to time dependence of the boundary conditions or material constants

    Turns in transmembrane helices – determination of the minimal length of a “helical hairpin” and derivation of a fine-grained turn propensity scale

    Get PDF
    We have recently reported a first experimental turn propensity scale for transmembrane helices. This scale was derived from measurements of how efficiently a given residue placed in the middle of a 40 residue poly(Leu) stretch induces the formation of a "helical hairpin" with two rather than one transmembrane segment. We have now extended these studies, and have determined the minimum length of a poly(Leu) stretch compatible with the formation of a helical hairpin. We have also derived a more fine-grained turn propensity scale by (i) introducing each of the 20 amino acid residues into the middle of the shortest poly(Leu) stretch compatible with helical hairpin formation, and (ii) introducing pairs of residues in the middle of the 40 residue poly(Leu) stretch. The new turn propensities are consistent with the amino acid frequencies found in short hairpin loops in membrane proteins of known 3D structure

    Radiative Phase Transitions and Casmir Effect Instabilities

    Full text link
    Molecular quantum electrodynamics leads to photon frequency shifts and thus to changes in condensed matter free energies often called the Casimir effect. Strong quantum electrodynamic coupling between radiation and molecular motions can lead to an instability beyond which one or more photon oscillators undergo a displacement phase transition. The phase boundary of the transition can be located by a Casimir free energy instability.Comment: ReVTeX4 format 1 *.eps figur

    A study on the interaction between metformin and constituents of a commercial herbal product

    Get PDF
    Purpose: To investigate the interactions between metformin and Yoyo Bitters® including some of its constituents in the management of diabetes mellitus.Method: Using the generic form of metformin (Glucophage®) tablets, tests such as disintegration time, dissolution profile, Fourier transform infrared (FTIR) spectroscopy and in vivo hypoglycaemia tests using Wistar albino rat were performed for metformin to investigate its behaviour in the presence and absence of Yoyo Bitters and some plant extracts used in its formulation.Results: Metformin tablets used met BP specification in terms of pharmaceutical properties. There was no significant change in the disintegration properties of the metformin tablets in the presence of Yoyo Bitters (p > 0.05) while a significant change occurred in the dissolution profile (p < 0.05). The FTIR spectra showed some level of interactions due to disappearance of some spectral peaks. In vivo result showed a significant reduction (p < 0.05) in the duration of action of metformin.Conclusion: Concomitant administration of metformin and Yoyo Bitters showed interaction that appeared antagonistic to the hypoglycaemic effect of metformin both in vitro and in rat modelsKeywords: Metformin, In vitro interactions, Yoyo Bitters, Diabete

    Properties of finite Gaussians and the discrete-continuous transition

    Full text link
    Weyl's formulation of quantum mechanics opened the possibility of studying the dynamics of quantum systems both in infinite-dimensional and finite-dimensional systems. Based on Weyl's approach, generalized by Schwinger, a self-consistent theoretical framework describing physical systems characterised by a finite-dimensional space of states has been created. The used mathematical formalism is further developed by adding finite-dimensional versions of some notions and results from the continuous case. Discrete versions of the continuous Gaussian functions have been defined by using the Jacobi theta functions. We continue the investigation of the properties of these finite Gaussians by following the analogy with the continuous case. We study the uncertainty relation of finite Gaussian states, the form of the associated Wigner quasi-distribution and the evolution under free-particle and quantum harmonic oscillator Hamiltonians. In all cases, a particular emphasis is put on the recovery of the known continuous-limit results when the dimension dd of the system increases.Comment: 21 pages, 4 figure

    Classical and quantum radiation from a moving charge in an expanding universe

    Get PDF
    We investigate photon emission from a moving particle in an expanding universe. This process is analogous to the radiation from an accelerated charge in the classical electromagnetic theory. Using the framework of quantum field theory in curved spacetime, we demonstrate that the Wentzel-Kramers-Brillouin (WKB) approximation leads to the Larmor formula for the rate of the radiation energy from a moving charge in an expanding universe. Using exactly solvable models in a radiation-dominated universe and in a Milne universe, we examine the validity of the WKB formula. It is shown that the quantum effect suppresses the radiation energy in comparison with the WKB formula.Comment: 16 pages, JCAP in pres
    • …
    corecore