9 research outputs found

    Axiomatization of Inconsistency Indicators for Pairwise Comparisons

    Full text link
    This study proposes revised axioms for defining inconsistency indicators in pairwise comparisons. It is based on the new findings that "PC submatrix cannot have a worse inconsistency indicator than the PC matrix containing it" and that there must be a PC submatrix with the same inconsistency as the given PC matrix. This study also provides better reasoning for the need of normalization. It is a revision of axiomatization by Koczkodaj and Szwarc, 2014 which proposed axioms expressed informally with some deficiencies addressed in this study.Comment: This paper should have been withdrawn by the first author a long time ago. The work has been finished with another researcher, I have been pushed out the projec

    Weighted Traces on Algebras of Pseudo-Differential Operators and Geometry of Loop Groups

    Full text link
    Using {\it weighted traces} which are linear functionals of the type AtrQ(A):=(tr(AQz)z1tr(AQz))z=0A\to tr^Q(A):=(tr(A Q^{-z})-z^{-1} tr(A Q^{-z}))_{z=0} defined on the whole algebra of (classical) pseudo-differential operators (P.D.O.s) and where QQ is some positive invertible elliptic operator, we investigate the geometry of loop groups in the light of the cohomology of pseudo-differential operators. We set up a geometric framework to study a class of infinite dimensional manifolds in which we recover some results on the geometry of loop groups, using again weighted traces. Along the way, we investigate properties of extensions of the Radul and Schwinger cocycles defined with the help of weighted traces.Comment: 36 page

    Hilbert series and moduli spaces of k U(N) vortices

    Get PDF
    We study the moduli spaces of k U(N) vortices which are realized by the Higgs branch of a U(k) supersymmetric gauge theory. The theory has 4 supercharges and lives on k D1-branes in a N D3- and NS5-brane background. We realize the vortex moduli space as a C* projection of the vortex master space. The Hilbert series is calculated in order to characterize the algebraic structure of the vortex master space and to identify the precise C* projection. As a result, we are able to fully classify the moduli spaces up to 3 vortices
    corecore