20 research outputs found

    The ins and outs of nanoparticle technology in neurodegenerative diseases and cancer.

    Get PDF
    As we enter the twenty-first century, several therapies based on using nanoparticles (NPs) ranging in size 1 - 1000 nm have been successfully brought to the clinic to treat cancer, pain and infectious diseases. These therapies bring together the ability of NPs to target the delivery of drugs more precisely, to improve solubility, to prevent degradation, to improve their therapeutic index and to reduce the immune response. NPs come in all shapes and sizes, designed specifically for biomedical applications such as solid lipid polymers, liposomes, dendrimers, nanogels, and quantum dots. These NPs offer many attractive characteristics such as biological stability and biocompatibility, thus incorporating different biological or drug molecules. Among the major therapeutic challenges from neurological diseases through to cancer is the development of nanomaterials that are able to be effective against the disease. In the case of neurodegeneration, one of the most difficult areas to penetrate for drug discovery in the body is the central nervous system, protected by the blood-brain-barrier. Whilst in the case of cancer, the biggest problem is how to specifically target a tumor with sufficient drug without causing side effects or inducing resistance. A new generation of intelligent NPs are emerging for the treatment of human disease such as neurological disorders and cancer. The use of natural alternative therapy is an encouraging idea in drug discovery. To this end as we gain more knowledge into the biological function of exosomes, this will allow us to harness their potential as natural NPs in future therapeutics

    Autophagy dysfunction and its link to Alzheimer's disease and type II diabetes mellitus.

    No full text
    Epidemiological data testifies the increasing incidence of Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Some associations were made between occidental lifestyle and development of these pathologies, moreover AD and T2DM are linked since each pathology is a causative risk factor for the other. Interestingly, autophagy, a catabolic pathway whose efficiency declines with age is importantly impaired in the affected tissues. Autophagy regulation is dependent of cell metabolic status and consequently on the 5'AMP-activated protein kinase (AMPK) and mammalian target of rapamycin signaling pathways. These pathways are altered with aging and molecular, pharmacological and physiological interventions increase lifespan in various organismal models and favours healthy aging diminishing the occurrence of age-related diseases such as diabetes, cancer, cardiovascular and neurodegenerative pathologies. Decreasing calorie intake has been known for a long time to have a beneficial effect on longevity and health. Some drug agonists of AMPK are known to mimic these effects such as metformin or resveratrol, a polyphenol extracted from plants and present in red wine, a component of the French paradox related diet. In this review, we present the epidemiological and pathogenesis links existing between AD and T2DM with an insight into the perturbations of the autophagic process highlighting the crucial role of the AMPK in development of age and metabolic related diseases. Hence, in a last part we will discuss the possible interventions susceptible to combat both T2DM and AD
    corecore