510 research outputs found

    A new duality transformation for fourth-order gravity

    Get PDF
    We prove that for non-linear L = L(R), the Lagrangians L and \hat L give conformally equivalent fourth-order field equations being dual to each other. The proof represents a new application of the fact that the operator is conformally invariant.Comment: 11 pages, LaTeX, no figures. Gen. Relat. Grav. in prin

    Non-Trivial Vacua in Higher-Derivative Gravitation

    Get PDF
    A discussion of an extended class of higher-derivative classical theories of gravity is presented. A procedure is given for exhibiting the new propagating degrees of freedom, at the full non-linear level, by transforming the higher-derivative action to a canonical second-order form. For general fourth-order theories, described by actions which are general functions of the scalar curvature, the Ricci tensor and the full Riemann tensor, it is shown that the higher-derivative theories may have multiple stable vacua. The vacua are shown to be, in general, non-trivial, corresponding to deSitter or anti-deSitter solutions of the original theory. It is also shown that around any vacuum the elementary excitations remain the massless graviton, a massive scalar field and a massive ghost-like spin-two field. The analysis is extended to actions which are arbitrary functions of terms of the form ∇2kR\nabla^{2k}R, and it is shown that such theories also have a non-trivial vacuum structure.Comment: 25 pages, LaTeX2e with AMS-LaTeX 1.2, 7 eps figure

    Ostrogradski Formalism for Higher-Derivative Scalar Field Theories

    Get PDF
    We carry out the extension of the Ostrogradski method to relativistic field theories. Higher-derivative Lagrangians reduce to second differential-order with one explicit independent field for each degree of freedom. We consider a higher-derivative relativistic theory of a scalar field and validate a powerful order-reducing covariant procedure by a rigorous phase-space analysis. The physical and ghost fields appear explicitly. Our results strongly support the formal covariant methods used in higher-derivative gravity.Comment: 22 page

    Gauge Fixing in Higher Derivative Gravity

    Get PDF
    Linearized four-derivative gravity with a general gauge fixing term is considered. By a Legendre transform and a suitable diagonalization procedure it is cast into a second-order equivalent form where the nature of the physical degrees of freedom, the gauge ghosts, the Weyl ghosts, and the intriguing "third ghosts", characteristic to higher-derivative theories, is made explicit. The symmetries of the theory and the structure of the compensating Faddeev-Popov ghost sector exhibit non-trivial peculiarities.Comment: 21 pages, LaTe

    Equivalence of black hole thermodynamics between a generalized theory of gravity and the Einstein theory

    Get PDF
    We analyze black hole thermodynamics in a generalized theory of gravity whose Lagrangian is an arbitrary function of the metric, the Ricci tensor and a scalar field. We can convert the theory into the Einstein frame via a "Legendre" transformation or a conformal transformation. We calculate thermodynamical variables both in the original frame and in the Einstein frame, following the Iyer--Wald definition which satisfies the first law of thermodynamics. We show that all thermodynamical variables defined in the original frame are the same as those in the Einstein frame, if the spacetimes in both frames are asymptotically flat, regular and possess event horizons with non-zero temperatures. This result may be useful to study whether the second law is still valid in the generalized theory of gravity.Comment: 14 pages, no figure

    The dynamical equivalence of modified gravity revisited

    Full text link
    We revisit the dynamical equivalence between different representations of vacuum modified gravity models in view of Legendre transformations. The equivalence is discussed for both bulk and boundary space, by including in our analysis the relevant Gibbons-Hawking terms. In the f(R) case, the Legendre transformed action coincides with the usual Einstein frame one. We then re-express the R+f(G) action, where G is the Gauss-Bonnet term, as a second order theory with a new set of field variables, four tensor fields and one scalar and study its dynamics. For completeness, we also calculate the conformal transformation of the full Jordan frame R+f(G) action. All the appropriate Gibbons-Hawking terms are calculated explicitly.Comment: 17 pages; v3: Revised version. New comments added in Sections 3 & 5. New results added in Section 6. Version to appear in Class. Quantum Gravit

    The Universality of Einstein Equations

    Get PDF
    It is shown that for a wide class of analytic Lagrangians which depend only on the scalar curvature of a metric and a connection, the application of the so--called ``Palatini formalism'', i.e., treating the metric and the connection as independent variables, leads to ``universal'' equations. If the dimension nn of space--time is greater than two these universal equations are Einstein equations for a generic Lagrangian and are suitably replaced by other universal equations at bifurcation points. We show that bifurcations take place in particular for conformally invariant Lagrangians L=Rn/2gL=R^{n/2} \sqrt g and prove that their solutions are conformally equivalent to solutions of Einstein equations. For 2--dimensional space--time we find instead that the universal equation is always the equation of constant scalar curvature; the connection in this case is a Weyl connection, containing the Levi--Civita connection of the metric and an additional vectorfield ensuing from conformal invariance. As an example, we investigate in detail some polynomial Lagrangians and discuss their bifurcations.Comment: 15 pages, LaTeX, (Extended Version), TO-JLL-P1/9
    • 

    corecore