30 research outputs found

    A 1% Measurement of the gravitomagnetic field of the earth with laser-tracked satellites

    Get PDF
    A new measurement of the gravitomagnetic field of the Earth is presented. The measurement has been obtained through the careful evaluation of the Lense-Thirring (LT) precession on the combined orbits of three passive geodetic satellites, LAGEOS, LAGEOS II, and LARES, tracked by the Satellite Laser Ranging (SLR) technique. This general relativity precession, also known as frame-dragging, is a manifestation of spacetime curvature generated by mass-currents, a peculiarity of Einstein’s theory of gravitation. The measurement stands out, compared to previous measurements in the same context, for its precision (≃7.4×10−3, at a 95% confidence level) and accuracy (≃16×10−3), i.e., for a reliable and robust evaluation of the systematic sources of error due to both gravitational and non-gravitational perturbations. To achieve this measurement, we have largely exploited the results of the GRACE (Gravity Recovery And Climate Experiment) mission in order to significantly improve the description of the Earth’s gravitational field, also modeling its dependence on time. In this way, we strongly reduced the systematic errors due to the uncertainty in the knowledge of the Earth even zonal harmonics and, at the same time, avoided a possible bias of the final result and, consequently, of the precision of the measurement, linked to a non-reliable handling of the unmodeled and mismodeled periodic effects

    Updates after the Near-Earth Commissioning Phase of Italian Spring Accelerometer – ISA

    Get PDF
    AbstractISA (Italian Spring Accelerometer) is a high sensitivity accelerometer flying, as scientific payload, on-board one of the two spacecraft (the Mercury Planetary Orbiter) of BepiColombo, the first ESA mission to Mercury. The first commissioning phase (performed in the period November 2018 - August 2019) allowed to verify the functionality of the instrument itself as well as of the related data handling and archiving system. Moreover, the acceleration measurements gathered in this time frame allow to envisage the potentiality of such an instrument as a high-accuracy monitor of the spacecraft mechanical environment

    Testing General Relativity vs. Alternative Theories of Gravitation with the SaToR-G Experiment

    Get PDF
    A new experiment in the field of gravitation, SaToR-G, is presented. The experiment aims to compare the predictions of different theories of gravitation in the limit of weak-field and slow-motion. The ultimate goal of the experiment is to look for possible "new physics" beyond the current standard model of gravitation based on the predictions of General Relativity. A key role in the above perspective is the theoretical and experimental framework within which to confine our work. To this end, we will try to exploit as much as possible the framework suggested by Dicke over fifty years ago

    BepiVR: Virtual Reality for BepiColombo outreach

    Get PDF
    Description of the project of a VR application for smartphone on the mission BepiColombo and the exploration of the planet Mercur

    The LARASE Spin Model of the two LAGEOS and LARES satellites

    Get PDF
    Satellite Laser Ranging (SLR) represents a very important technique of the observational space geodesy. In fact, Lunar Laser Ranging, Very Long Baseline Interferometry, Global Navigation Satellite Systems, Doppler Orbitography and Radiopositioning Integrated by Satellite, together with SLR constitute the Global Geodetic Observing System (GGOS). In the context of the GGOS activities, improvements in technology and in modeling will produce advances in Geodesy and Geophysics as well as in General Relativity (GR) measurements. Therefore, these important research fields are not independent, but tightly related to each other. The LARASE (LAser RAnged Satellites Experiment) research program has its main objectives in tests and measurements of Einstein's theory of GR via Precise Orbit Determination (POD) of a set of geodetic satellites. In order to reach such goals by means of very precise measurements of a number of relativistic parameters (and, at the same time, to provide a robust and unassailable error budget of the main systematic effects), we are also reviewing previous models and we are developing new models for the main perturbations (both gravitational and non-gravitational) that act on the orbits of the two LAGEOS and on that of LARES satellites. Within this paper we focus on modeling the spin vector of these satellites. The spin knowledge, both in orientation and rate, is of fundamental importance in order to correctly model the thermal effects acting on the surface of these satellites. These are very important non-gravitational perturbations (NGP) that produce long-term effects on the orbit of the cited satellites, especially for the two LAGEOS, and improvements in their modeling will be very useful both in the field of GR measurements and in those of space geodesy and geophysical applications. Indeed, the current RMS value of the range residuals of the LAGEOS satellites, obtained by the Analysis Centers of the International Laser Ranging Service, is at the level of a few cm since 1992, down to a cm or less during the last years. However, because of the incompleteness in current knowledge of dynamical models, empirical accelerations have been heavily employed to obtain such results. In this context, any step forward in the models developed for the NGP will be useful to reduce the use of empirical accelerations; it also represents an essential prerequisite to reach a sub-mm precision in the RMS of the SLR range residuals and the corresponding benefits in Geophysics and Geodesy, regarding e.g. stations coordinates knowledge, Earth's geocenter and reference frame realization. The paper will focus upon the improvements we obtained with respect on previous models of the spin of the two LAGEOS satellites based on averaged equations for the external torques in the rapid-spin approximation, as well as in a new general model that we developed and based on the solution of the full set of Euler equations

    CAESAR: Space Weather archive prototype for ASPIS

    Full text link
    The project CAESAR (Comprehensive spAce wEather Studies for the ASPIS prototype Realization) is aimed to tackle all the relevant aspects of Space Weather (SWE) and realize the prototype of the scientific data centre for Space Weather of the Italian Space Agency (ASI) called ASPIS (ASI SPace Weather InfraStructure). This contribution is meant to bring attention upon the first steps in the development of the CAESAR prototype for ASPIS and will focus on the activities of the Node 2000 of CAESAR, the set of Work Packages dedicated to the technical design and implementation of the CAESAR ASPIS archive prototype. The product specifications of the intended resources that will form the archive, functional and system requirements gathered as first steps to seed the design of the prototype infrastructure, and evaluation of existing frameworks, tools and standards, will be presented as well as the status of the project in its initial stage.Comment: 4 pages, 2 figures, ADASS XXXII (2022) Proceeding

    First NGP measurements at Mercury

    No full text
    ISA (Italian Spring Accelerometer) is a scientific payload of the Mercury Planetary Orbiter (MPO) module of the ESA/JAXA BepiColombo mission to planet Mercury and it is the first high-sensitivity accelerometer on-board an interplanetary spacecraft. It will be one of the key instruments to perform Radio Science Experiments during the orbital phase. The instrument is sensitive to any acceleration, greater than 10-8 ms-2Hz-1/2, perturbing the free fall of the spacecraft in the overall gravity field. The main goal of ISA is indeed to measure the so-called Non Gravitational Perturbations (NGP) allowing to reconstruct, a posteriori, the motion of the spacecraft on a geodesic of spacetime. During the first Mercury flyby, performed in October 2021, the spacecraft approached the target planet reaching an altitude above its surface of only 200 km. Thanks to this very low altitude and to the ISA on-board position in cruise configuration, far away from the center of mass of the overall composite spacecraft, the accelerometer has been able to clearly detect the gravity gradient accelerations. Indeed, this is the first direct measurement of the gravity gradient acceleration induced on a spacecraft by the gravity field of a celestial object different from the Earth. Near the closest approach to the planet, the spacecraft entered in eclipse, losing the effect of the solar radiation pressure acting on its surfaces exposed to the Sun. As a consequence, a sudden change of the acceleration was clearly detected by the accelerometer; the measured signal has a magnitude aligned with the expectations, computed considering optical coefficients and spacecraft attitude. In June 2022, BepiColombo will carry out a second flyby that will be very similar, in terms of altitude, attitude and B-plane coordinates, to the first one, representing an almost unique opportunity to compare two similar measurements
    corecore