5 research outputs found
A novel operator-independent noninvasive device for assessing arterial reactivity.
Background: Endothelial dysfunction is associated with increased risk of cardiovascular disease (CVD). Currently available noninvasive methods of measuring endothelial function have limitations. We tested a novel device that provides an automated measurement of the difference between baseline and post-ischemic, hyperemia-induced, brachial arterial compliance, a phenomenon known to be endothelium-dependent. The association between the calculated index, Flow-mediated Compliance Response (FCR), and established CVD risk indices was determined.
Methods: Adults with CVD risk factors or known coronary artery disease (CAD) were enrolled. Framingham Risk Score (FRS) was calculated and presence of metabolic syndrome (MetSyn) was assessed. Carotid artery plaques were identified by ultrasound. Cardiorespiratory fitness was assessed by 6-minute walk test (6MWT). FCR was measured using the device.
Results: Among 135 participants, mean age 49.3 +/- 17.9 years, characteristics included: 48% female, 7% smokers, 7% CAD, 10% type 2 diabetes, 34% MetSyn, and 38% with carotid plaque. Those with MetSyn had 24% lower FCR than those without (p \u3c 0.001). Lower FCR was associated with higher FRS percentile (r = -0.29, p \u3c 0.001), more MetSyn factors (r = -0.30, p \u3c 0.001), more carotid plaques (r = -0.22, p = 0.01), and lower 6MWT (r = 0.34, p \u3c 0.0001).
Conclusion: FCR, an index of arterial reactivity obtained automatically using a novel, operator-independent device, was inversely associated with established CVD risk indices, increased number of carotid plaques, and lower cardiorespiratory fitness. Whether measuring FCR could play a role in screening for CVD risk and assessing whether endothelial function changes in response to treatments aimed at CVD risk reduction, warrants further study