64 research outputs found

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    Data-Driven Modelling of the Inositol Trisphosphate Receptor (IPR) and its Role in Calcium-Induced Calcium Release (CICR)

    Get PDF
    We review the current state of the art of data-driven modelling of the inositol trisphosphate receptor (IPR). After explaining that the IPR plays a crucial role as a central regulator in calcium dynamics, several sources of relevant experimental data are introduced. Single ion channels are best studied by recording single-channel currents under different ligand concentrations via the patch-clamp technique. The particular relevance of modal gating, the spontaneous switching between different levels of channel activity that occur even at constant ligand concentrations, is highlighted. In order to investigate the interactions of IPRs, calcium release from small clusters of channels, so-called calcium puffs, can be used. We then present the mathematical framework common to all models based on single-channel data, aggregated continuous-time Markov models, and give a short review of statistical approaches for parameterising these models with experimental data. The process of building a Markov model that integrates various sources of experimental data is illustrated using two recent examples, the model by Ullah et al. and the “Park–Drive” model by Siekmann et al. (Biophys. J. 2012), the only models that account for all sources of data currently available. Finally, it is demonstrated that the essential features of the Park–Drive model in different models of calcium dynamics are preserved after reducing it to a two-state model that only accounts for the switching between the inactive “park” and the active “drive” modes. This highlights the fact that modal gating is the most important mechanism of ligand regulation in the IPR. It also emphasises that data-driven models of ion channels do not necessarily have to lead to detailed models but can be constructed so that relevant data is selected to represent ion channels at the appropriate level of complexity for a given application

    Axons Amplify Somatic Incomplete Spikes into Uniform Amplitudes in Mouse Cortical Pyramidal Neurons

    Get PDF
    BACKGROUND: Action potentials are the essential unit of neuronal encoding. Somatic sequential spikes in the central nervous system appear various in amplitudes. To be effective neuronal codes, these spikes should be propagated to axonal terminals where they activate the synapses and drive postsynaptic neurons. It remains unclear whether these effective neuronal codes are based on spike timing orders and/or amplitudes. METHODOLOGY/PRINCIPAL FINDINGS: We investigated this fundamental issue by simultaneously recording the axon versus soma of identical neurons and presynaptic vs. postsynaptic neurons in the cortical slices. The axons enable somatic spikes in low amplitude be enlarged, which activate synaptic transmission in consistent patterns. This facilitation in the propagation of sequential spikes through the axons is mechanistically founded by the short refractory periods, large currents and high opening probability of axonal voltage-gated sodium channels. CONCLUSION/SIGNIFICANCE: An amplification of somatic incomplete spikes into axonal complete ones makes sequential spikes to activate consistent synaptic transmission. Therefore, neuronal encoding is likely based on spike timing order, instead of graded analogues

    Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism

    Full text link

    Gating scheme for single GABA-activated Cl- channels determined from stability plots, dwell-time distributions, and adjacent-interval durations

    No full text
    To study the gating of a GABA-activated Cl- channel, currents from single channels activated by 1.0 microM GABA were examined in patches of membrane excised from cultured chick cerebral neurons. The distributions of open and shut interval durations were each described by the sum of 3 exponential components, suggesting that the channel normally enters at least 3 open and 3 shut states. Five different 6- state gating schemes were found that could describe, all equally well, the observed distributions of open and shut interval durations. Plots of the mean duration of open intervals adjacent to shut intervals of specified durations revealed that, on the average, openings of brief duration were adjacent to closings of long duration. This observation indicated 2 or more independent transition pathways between the open and shut states. Examination of the distributions of open intervals adjacent to shut intervals of specified durations revealed that the time constants of the exponential components describing these conditional open-interval distributions were independent of the durations of the adjacent shut intervals. In contrast, the areas changed in a manner consistent with open states of briefer mean lifetimes typically making transitions to shut states of longer mean lifetimes. Four of the 5 gating schemes considered were rejected because they did not predict the relationship between adjacent intervals or because they predicted that the channel should switch between 2 gating modes with markedly different mean open and shut times, which was not a characteristic of the experimental data. The single remaining kinetic scheme could account for the observed kinetic properties of the GABA channel

    The Neuromuscular Junction

    No full text
    corecore