1,923 research outputs found

    Snowmass 2001: Jet Energy Flow Project

    Get PDF
    Conventional cone jet algorithms arose from heuristic considerations of LO hard scattering coupled to independent showering. These algorithms implicitly assume that the final states of individual events can be mapped onto a unique set of jets that are in turn associated with a unique set of underlying hard scattering partons. Thus each final state hadron is assigned to a unique underlying parton. The Jet Energy Flow (JEF) analysis described here does not make such assumptions. The final states of individual events are instead described in terms of flow distributions of hadronic energy. Quantities of physical interest are constructed from the energy flow distribution summed over all events. The resulting analysis is less sensitive to higher order perturbative corrections and the impact of showering and hadronization than the standard cone algorithms.Comment: REVTeX4, 13 pages, 6 figures; Contribution to the P5 Working Group on QCD and Strong Interactions at Snowmass 200

    Intra- and interspecific polymorphisms ofLeishmania donovani andL. tropica minicircle DNA

    Get PDF
    A pair of degenerate polymerase chain reaction (PCR) primers (LEI-1, TCG GAT CC[C,T] [G,C]TG GGT AGG GGC GT; LEI-2, ACG GAT CC[G,C] [G,C][A,C]C TAT [A,T]TT ACA CC) defining a 0.15-kb segment ofLeishmania minicircle DNA was constructed. These primers amplified not only inter- but also intraspecifically polymorphic sequences. Individual sequences revealed a higher intraspecific than interspecific divergence. It is concluded that individual sequences are of limited relevance for species determination. In contrast, when a data base of 19 different sequences was analyzed in a dendrographic plot, an accurate species differentiation was feasible

    Subthalamic responses to motor cortex stimulation:Selective targeting of the subthalamic motor area

    Get PDF
    Introduction: Over the last decades, it has been shown consistently that deep brain stimulation (DBS) of the subthalamic nucleus (STN) alleviates motor symptoms in Parkinson (PD) patients. However, in a substantial number of patients the beneficial effects of STN DBS are overshadowed by cognitive and/or limbic alterations. These side effects of STN DBS are thought to be caused by stimulation of the associative and limbic pathways that run through the STN. We hypothesize that an optimal effect of STN DBS on the motor symptoms without inducing cognitive and limbic side effects can be achieved by selective stimulation of the STN motor region by improved targeting. To achieve this goal, we made use of the cortico-subthalamic projection. We hypothesize that in PD patients motor cortex stimulation (MCS) evokes a specific response in the dorsolateral part of the STN, supposedly the STN motor area, that can be seen in both single unit activity and local field potentials (LFP). Material and Methods: Here we describe the results of one PD patient in which we performed MCS during the intra-operative STN microrecordings. In total, we measured single unit activity of eight neurons at various locations in the STN and LFP’s at the same locations. Data were analyzed using Matlab. All recordings were high pass filtered, the stimulus artifact was removed by time shifting, peristimulus time histograms were constructed from which significant excitatory and inhibitory responses were determined using the change point analysis. Results: The STN neurons had an average spontaneous firing rate of 64.6±36.3 Hz. Within the STN responses to MCS were seen, while outside the borders of the STN no responses were found. Responses differed between ventro-dorsal regions in the anterior-posterior and medio-lateral plane. In the anterior and lateral electrode at dorsal levels of the STN a significant early excitation (~10-50ms) and subsequent inhibition (50-110ms) were seen. The lateral electrode also showed a late excitation (~115-170ms). The responses we found were partially similar to reports in animal studies, but we did not observe the typical triphasic response. Conclusion: We found responses in the STN during MCS, which were significantly different in the dorsally recorded neurons in the lateral and anterior trajectory compared to the neurons recorded in other regions of the STN. In the near future MCS could be a novel tool to determine the motor area of the STN to optimize targeting for DBS in PD patients, thereby preventing cognitive and limbic side effect

    Predicate Abstraction for Linked Data Structures

    Full text link
    We present Alias Refinement Types (ART), a new approach to the verification of correctness properties of linked data structures. While there are many techniques for checking that a heap-manipulating program adheres to its specification, they often require that the programmer annotate the behavior of each procedure, for example, in the form of loop invariants and pre- and post-conditions. Predicate abstraction would be an attractive abstract domain for performing invariant inference, existing techniques are not able to reason about the heap with enough precision to verify functional properties of data structure manipulating programs. In this paper, we propose a technique that lifts predicate abstraction to the heap by factoring the analysis of data structures into two orthogonal components: (1) Alias Types, which reason about the physical shape of heap structures, and (2) Refinement Types, which use simple predicates from an SMT decidable theory to capture the logical or semantic properties of the structures. We prove ART sound by translating types into separation logic assertions, thus translating typing derivations in ART into separation logic proofs. We evaluate ART by implementing a tool that performs type inference for an imperative language, and empirically show, using a suite of data-structure benchmarks, that ART requires only 21% of the annotations needed by other state-of-the-art verification techniques
    • …
    corecore