765 research outputs found

    Robust Coordinated Design of Excitation and TCSC-Based Stabilizers Using genetic algorithms

    Get PDF
    Power system stability enhancement via robust coordinated design of a power system stabilizer (PSS) and a thyristor-controlled series capacitor (TCSC)-based stabilizer is thoroughly investigated in this paper. The coordinated design problem of robust excitation and TCSC-based controllers over a wide range of loading conditions and system configurations is formulated as an optimization problem with an eigenvalue-based objective function. The real-coded genetic algorithm (RCGA) is employed to search for optimal controller parameters. This study also presents a singular value decomposition (SVD)-based approach to assess and measure the controllability of the poorly damped electromechanical modes by different control inputs. The damping characteristics of the proposed control schemes are also evaluated in terms of the damping torque coefficient over a wide range of loading conditions. The proposed stabilizers were tested on a weakly connected power system. The damping torque coefficient analysis, nonlinear simulation results, and eigenvalue analysis show the effectiveness and robustness of the proposed approach over a wide range of loading conditions

    Robust Coordinated Design of Excitation and TCSC-Based Stabilizers Using genetic algorithms

    Get PDF
    Power system stability enhancement via robust coordinated design of a power system stabilizer (PSS) and a thyristor-controlled series capacitor (TCSC)-based stabilizer is thoroughly investigated in this paper. The coordinated design problem of robust excitation and TCSC-based controllers over a wide range of loading conditions and system configurations is formulated as an optimization problem with an eigenvalue-based objective function. The real-coded genetic algorithm (RCGA) is employed to search for optimal controller parameters. This study also presents a singular value decomposition (SVD)-based approach to assess and measure the controllability of the poorly damped electromechanical modes by different control inputs. The damping characteristics of the proposed control schemes are also evaluated in terms of the damping torque coefficient over a wide range of loading conditions. The proposed stabilizers were tested on a weakly connected power system. The damping torque coefficient analysis, nonlinear simulation results, and eigenvalue analysis show the effectiveness and robustness of the proposed approach over a wide range of loading conditions

    Analysis of power system stability enhancement via excitation and FACTS-based stabilizers

    Get PDF
    Power system stability enhancement via excitation and FACTS-based stabilizers is thoroughly investigated in this paper. This study presents a singular value decomposition-based approach to assess and measure the controllability of the poorly damped electromechanical modes by different control inputs. The design problem of a power system stabilizer and different FACTS-based stabilizers is formulated as an optimization problem. An eigenvalue-based objective function to increase the system damping and improve the system response is developed. Then, a real-coded genetic algorithm is employed to search for optimal controller parameters. In addition, the damping characteristics of the proposed schemes are also evaluated in terms of the damping torque coefficient with different loading conditions for better understanding of the coordination problem requirements. The proposed stabilizers are tested on a weakly connected power system with different loading conditions. The damping torque coefficient analysis, nonlinear simulation results, and eigenvalue analysis show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions

    Stark Effect of Interactive Electron-hole pairs in Spherical Semiconductor Quantum Dots

    Full text link
    We present a theoretical variational approach, based on the effective mass approximation (EMA), to study the quantum-confinement Stark effects for spherical semiconducting quantum dots in the strong confinement regime of interactive electron-hole pair and limiting weak electric field. The respective roles of the Coulomb potential and the polarization energy are investigated in details. Under reasonable physical assumptions, analytical calculations can be performed. They clearly indicate that the Stark shift is a quadratic function of the electric field amplitude in the regime of study. The resulting numerical values are found to be in good agreement with experimental data over a significant domain of validity

    Application of PSO to design UPFC-based stabilizers

    Get PDF
    Today, power demand grows rapidly and expansion in transmission and generation is restricted with the limited availability of resources and the strict environmental constraints. Consequently, power systems are today much more loaded than before. In addition, interconnection between remotely located power systems turned out to be a common practice. These give rise to low frequency oscillations in the range of 0.1-3.0 Hz. If not well damped, these oscillations may keep growing in magnitude until loss of synchronism results. Power system stabilizers (PSSs) have been used in the last few decades to serve the purpose of enhancing power system damping to low frequency oscillations. PSSs have proved to be efficient in performing their assigned tasks. The objective of this chapter is to investigate the potential of particle swarm optimization as a tool in designing UPFC-based stabilizers to improve power system transient stability. To estimate the controllability of each of the UPFC control signals on the electromechanical modes, singular value decomposition is employed. The problem of designing all the UPFCbased stabilizers individually is formulated as an optimization problem. Particle swarm optimizer is utilized to search for the optimum stabilizer parameter settings that optimize a given objective function. Coordinated design of the different stabilizers is also carried out by finding the best parameter settings for more than one stabilizer at a given operating condition in a coordinated manner

    Simultaneous Stabilization Of Power System Using UPFC-Based Controllers

    Get PDF
    This article studies the use of robust UPFC-based stabilizers to damp low frequency oscillations. The potential of the UPFC-based stabilizers to enhance the dynamic stability is evaluated by singular value decomposition. Particle swarm optimization technique is used to optimize the parameters of each stabilizer, first individually, then concurrently. To ensure the robustness of the proposed stabilizers, the design process considers a wide range of operating conditions. The effectiveness of the proposed controllers is verified through several linear and nonlinear analysis techniques. These techniques prove that the coordinated design of UPFC-based stabilizers is superior over any of the individual designs

    Simultaneous Stabilization Of Power System Using UPFC-Based Controllers

    Get PDF
    This article studies the use of robust UPFC-based stabilizers to damp low frequency oscillations. The potential of the UPFC-based stabilizers to enhance the dynamic stability is evaluated by singular value decomposition. Particle swarm optimization technique is used to optimize the parameters of each stabilizer, first individually, then concurrently. To ensure the robustness of the proposed stabilizers, the design process considers a wide range of operating conditions. The effectiveness of the proposed controllers is verified through several linear and nonlinear analysis techniques. These techniques prove that the coordinated design of UPFC-based stabilizers is superior over any of the individual designs

    Structure factor of polymers interacting via a short range repulsive potential: application to hairy wormlike micelles

    Full text link
    We use the Random Phase Approximation (RPA) to compute the structure factor, S(q), of a solution of chains interacting through a soft and short range repulsive potential V. Above a threshold polymer concentration, whose magnitude is essentially controlled by the range of the potential, S(q) exhibits a peak whose position depends on the concentration. We take advantage of the close analogy between polymers and wormlike micelles and apply our model, using a Gaussian function for V, to quantitatively analyze experimental small angle neutron scattering profiles of semi-dilute solutions of hairy wormlike micelles. These samples, which consist in surfactant self-assembled flexible cylinders decorated by amphiphilic copolymer, provide indeed an appropriate experimental model system to study the structure of sterically interacting polymer solutions
    corecore