5 research outputs found

    Régulation de protéotoxicité via la NEDDylation atypique

    No full text
    Les cellules sont constamment exposĂ©es Ă  des stress « protĂ©otoxiques » qui altĂšrent leurs protĂ©ines. Si les protĂ©ines endommagĂ©es ne sont pas rĂ©parĂ©es ou Ă©liminĂ©es, elles peuvent former des agrĂ©gats toxiques pouvant conduire Ă  l’émergence de plusieurs maladies, telle que les maladies neurodĂ©gĂ©nĂ©ratives et le cancer. Pour Ă©viter cette toxicitĂ©, les cellules ont dĂ©veloppĂ© plusieurs stratĂ©gies qui collaborent et communiquent afin d'assurer le contrĂŽle de qualitĂ© des protĂ©ines et maintenir l’intĂ©gritĂ© du protĂ©ome cellulaire. L’ensemble de ces stratĂ©gies forment le rĂ©seau de l’homĂ©ostasie protĂ©ique ou « protĂ©ostasie ». Ce rĂ©seau inclus les chaperonnes molĂ©culaires, les systĂšmes protĂ©olytiques (lysosomes, protĂ©asomes) et des systĂšmes de sĂ©questration des protĂ©ines endommagĂ©es. L’Ubiquitine et les protĂ©ines apparentĂ©es Ă  l’Ubiquitine telle que SUMO et NEDD8, sont des effecteurs essentiels de ce rĂ©seau. Ces molĂ©cules modifient leurs substrats de façon covalente, grĂące Ă  l’action d’une cascade d’enzymes E1, E2 et E3. En principe, on considĂ©rait que chacune de ces voies employait sa propre cascade enzymatique pour la modification post-traductionnelle de ses substrats. L’Ubiquitination joue un rĂŽle essentiel dans la rĂ©ponse au stress cellulaire, surtout en assurant la dĂ©gradation protĂ©asomique des protĂ©ines mal repliĂ©es. RĂ©cemment, notre laboratoire a trouvĂ© que plusieurs stress protĂ©otoxiques telle que l’inhibition du protĂ©asome, un choc thermique et un stress oxydatif, causent une augmentation de NEDDylation. De maniĂšre remarquable, cette augmentation ne dĂ©pend pas de l’enzyme d’activation de NEDD8 NAE, mais plutĂŽt de celle de l’Ubiquitine Ube1. De plus, elle se caractĂ©rise par la formation des chaĂźnes poly-NEDD8 et des chaĂźnes mixtes entre NEDD8 et Ubiquitine. Ce processus est rĂ©versible et une restauration cellulaire est obtenue une fois le stress attĂ©nuĂ©. Le but de notre projet est de caractĂ©riser la rĂ©ponse de NEDD8 au stress cellulaire ou ce qu’on appelle « la NEDDylation atypique » en vue de comprendre son effet biologique pendant ces conditions. Nos rĂ©sultats montrent que la NEDDylation atypique dĂ©pend des protĂ©ines de stress Hsp70/90 et qu’elle cible principalement les protĂ©ines nouvellement synthĂ©tisĂ©es et mal repliĂ©es. On montre que, suite Ă  leur modification par NEDD8/Ubiquitin, ces protĂ©ines sont transloquĂ©es du cytosol au noyau, oĂč elles sont dĂ©gradĂ©es par le protĂ©asome. Cependant, des conditions de stress prolongĂ© causent une attĂ©nuation de l’activitĂ© nuclĂ©aire des protĂ©asomes 26S, ce qui provoque alors l’accumulation des protĂ©ines endommagĂ©es sous forme d’inclusions nuclĂ©aires. Ces derniĂšres sont rĂ©versibles et peuvent ĂȘtre Ă©liminĂ©es par le protĂ©asome une fois le stress attĂ©nuĂ©. Afin d’identifier les cibles de NEDD8 dans des conditions de stress, nous avons dĂ©veloppĂ© une approche protĂ©omique basĂ©e sur une stratĂ©gie de mutation ponctuelle (NEDD8R74K). Cette stratĂ©gie permet l’identification des sites spĂ©cifiques de NEDDylation au sein des protĂ©ines cibles. Cette approche en combinaison avec le SILAC a permis l’identification de NEDD8, Ubiquitine, SUMO-2 et les protĂ©ines ribosomiques en tant que principales cibles de NEDD8 en rĂ©ponse au stress. Ce qui Ă©tait plus intĂ©ressant est que, en appliquant l’étude protĂ©omique SILAC, on a pu constater que le rĂŽle essentiel de la NEDDylation atypique est d’induire l’agrĂ©gation/sĂ©questration d’un ensemble spĂ©cifique de protĂ©ines au sein des inclusions nuclĂ©aires. De plus, nous avons montrĂ© que l’agrĂ©gation induite par NEDD8 protĂšge les protĂ©asomes nuclĂ©aires d’une sĂ©vĂšre dĂ©ficience et permet une meilleure survie cellulaire pendant le stress. Notre Ă©tude prĂ©sente NEDD8 comme un nouvel effecteur dans le rĂ©seau de protĂ©ostasie, elle identifie une nouvelle inclusion nuclĂ©aire cytoprotectrice et montre que la NEDDylation atypique est essentielle pour la rĂ©ponse cellulaire au stress.Cells are continuously endangered by a variety of proteotoxic stresses that cause protein misfolding and accumulation. Defects in repair or elimination of protein damage can lead to the formation of toxic aggregates that have been associated with diseases, such as neurodegenerative disorders and cancer. To prevent this toxicity, cells have evolved multiple quality control processes that interact and cooperate to maintain protein homeostasis leading to cellular fitness. These processes form “the proteostasis network”, and include molecular chaperones, proteolytic machineries (lysosomes, proteasomes) and pathways for protein damage sequestration. One of the main effectors of this network is the Ubiquitin and the Ubiquitin-like molecules, such as SUMO and NEDD8. These molecules covalently modify proteins through the action of E1, E2 and E3 enzymes. Historically, it was believed that each pathway employed its own and unique set of enzymes to post-translationally modify its substrates. Ubiquitination is essential for the cellular response to stress, especially by targeting misfolded proteins for proteasomal degradation. However, we recently discovered that proteotoxic stresses including proteasome inhibition, heat shock and oxidative stress induce a global increase in protein NEDDylation. Surprisingly, this increase does not depend on the NEDD8 activating enzyme NAE, but rather on the Ubiquitin activating enzyme Ube1, and is characterized by the formation of poly-NEDD8 chains and mixed chains between NEDD8 and Ubiquitin. Importantly, this process is reversible and cell recovery is accomplished once stress is alleviated. In this study, we focused on characterizing the NEDD8 response to stress or “atypical NEDDylation” in order to understand its biological relevance under these conditions.Our results showed that atypical NEDDylation depends on Hsp70/90 and targets mainly newly synthesized damaged proteins. We showed that, after their NEDDylation/Ubiquitination, misfolded proteins are progressively translocated from the cytosol into the nucleus for proteasomal degradation. However, upon prolonged stress conditions, the activity of nuclear 26S proteasome is compromised, resulting in the accumulation of these conjugates into nuclear inclusions. These inclusions are reversible and eliminated by nuclear proteasomes once stress is alleviated. In order to identify NEDD8 targets upon these conditions, we developed a proteomic approach based on a point mutation strategy (NEDD8R74K) that enables a site-specific analysis of NEDDylated proteins. This approach in combination with SILAC allowed the identification of NEDD8, Ubiquitin, SUMO-2, and ribosomal proteins as the major NEDD8 targets upon stress. Interestingly, by SILAC proteomics we found that the main function of atypical NEDDylation is to induce the aggregation/sequestration of a specific subset of proteins within the nuclear inclusions. We showed that this NEDD8-induced aggregation protects nuclear proteasomes from a severe impairment and allows a better cell survival upon proteotoxic stress.Our study defines NEDD8 as a new effector in the proteostasis network, identifies a new cytoprotective nuclear inclusion and shows that atypical NEDDylation is essential for the cellular response to stress

    Proteome-wide identification of NEDD8 modification sites reveals distinct proteomes for canonical and atypical NEDDylation

    No full text
    International audienceThe ubiquitin-like molecule NEDD8 controls several biological processes and is a promising target for therapeutic intervention. NEDDylation occurs through specific NEDD8 enzymes (canonical) or enzymes of the ubiquitin system (atypical). Identification of NEDD8 sites on substrates is critical for delineating the processes controlled by NEDDylation. By combining the use of the NEDD8 R74K mutant with anti-di-glycine (anti-diGly) antibodies, we identified 1,101 unique NEDDylation sites in 620 proteins. Bioinformatics analysis reveals that canonical and atypical NEDDylation have distinct proteomes; the spliceosome/mRNA surveillance/DNA replication and ribosome/proteasome, respectively. The data also reveal the formation of poly-NEDD8, hybrid NEDD8-ubiquitin, and NEDD8-SUMO-2 chains as potential molecular signals. In particular, NEDD8-SUMO-2 chains are induced upon proteotoxic stress (atypical) through NEDDylation of K11 in SUMO-2, and conjugates accumulate in previously described nucleolus-related inclusions. The study uncovers a diverse proteome for NEDDylation and is consistent with the concept of extensive cross-talk between ubiquitin and Ubls under proteotoxic stress conditions
    corecore