58 research outputs found

    Age grading \u3cem\u3eAn. gambiae\u3c/em\u3e and \u3cem\u3eAn. arabiensis\u3c/em\u3e using near infrared spectra and artificial neural networks

    Get PDF
    Background Near infrared spectroscopy (NIRS) is currently complementing techniques to age-grade mosquitoes. NIRS classifies lab-reared and semi-field raised mosquitoes into \u3c or ≥ 7 days old with an average accuracy of 80%, achieved by training a regression model using partial least squares (PLS) and interpreted as a binary classifier. Methods and findings We explore whether using an artificial neural network (ANN) analysis instead of PLS regression improves the current accuracy of NIRS models for age-grading malaria transmitting mosquitoes. We also explore if directly training a binary classifier instead of training a regression model and interpreting it as a binary classifier improves the accuracy. A total of 786 and 870 NIR spectra collected from laboratory reared An. gambiae and An. arabiensis, respectively, were used and pre-processed according to previously published protocols. The ANN regression model scored root mean squared error (RMSE) of 1.6 ± 0.2 for An. gambiae and 2.8 ± 0.2 for An. arabiensis; whereas the PLS regression model scored RMSE of 3.7 ± 0.2 for An. gambiae, and 4.5 ± 0.1 for An. arabiensis. When we interpreted regression models as binary classifiers, the accuracy of the ANN regression model was 93.7 ± 1.0% for An. gambiae, and 90.2 ± 1.7% for An. arabiensis; while PLS regression model scored the accuracy of 83.9 ± 2.3% for An. gambiae, and 80.3 ± 2.1% for An. arabiensis. We also find that a directly trained binary classifier yields higher age estimation accuracy than a regression model interpreted as a binary classifier. A directly trained ANN binary classifier scored an accuracy of 99.4 ± 1.0 for An. gambiae and 99.0 ± 0.6% for An. arabiensis; while a directly trained PLS binary classifier scored 93.6 ± 1.2% for An. gambiae and 88.7 ± 1.1% for An. arabiensis. We further tested the reproducibility of these results on different independent mosquito datasets. ANNs scored higher estimation accuracies than when the same age models are trained using PLS. Regardless of the model architecture, directly trained binary classifiers scored higher accuracies on classifying age of mosquitoes than regression models translated as binary classifiers. Conclusion We recommend training models to estimate age of An. arabiensis and An. gambiae using ANN model architectures (especially for datasets with at least 70 mosquitoes per age group) and direct training of binary classifier instead of training a regression model and interpreting it as a binary classifier

    Using a Near-Infrared Spectrometer to Estimate the Age of Anopheles Mosquitoes Exposed to Pyrethroids

    Get PDF
    We report on the accuracy of using near-infrared spectroscopy (NIRS) to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as <7 or ≥7 d old with an overall accuracy of 79%. The age categories of Anopheles mosquitoes that were not exposed to the insecticide papers were predicted with 78% accuracy whereas the age categories of resistant, susceptible and mosquitoes exposed to control papers were predicted with 82%, 78% and 79% accuracy, respectively. The ages of 85% of the wild-collected mixed-age Anopheles were predicted by NIRS as ≤8 d for both susceptible and resistant groups. The age structure of wild-collected mosquitoes was not significantly different for the pyrethroid-susceptible and pyrethroid-resistant mosquitoes (P = 0.210). Based on these findings, NIRS chronological age estimation technique for Anopheles mosquitoes may be independent of insecticide exposure and the environmental conditions to which the mosquitoes are exposed

    An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra

    Get PDF
    After mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases in humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control and evaluation of infectious diseases transmitted by mosquitoes, where parous mosquitoes are assumed to be potentially infectious. Ovary dissections, which are currently used to determine the parity status of mosquitoes, are very tedious and limited to few experts. An alternative to ovary dissections is near-infrared spectroscopy (NIRS), which can estimate the age in days and the infectious state of laboratory and semi-field reared mosquitoes with accuracies between 80 and 99%. No study has tested the accuracy of NIRS for estimating the parity status of wild mosquitoes. In this study, we train an artificial neural network (ANN) models on NIR spectra to estimate the parity status of wild mosquitoes. We use four different datasets: An. arabiensis collected from Minepa, Tanzania (Minepa-ARA); An. gambiae s.s collected from Muleba, Tanzania (Muleba-GA); An. gambiae s.s collected from Burkina Faso (Burkina-GA); and An.gambiae s.s from Muleba and Burkina Faso combined (Muleba-Burkina-GA). We train ANN models on datasets with spectra preprocessed according to previous protocols. We then use autoencoders to reduce the spectra feature dimensions from 1851 to 10 and re-train the ANN models. Before the autoencoder was applied, ANN models estimated parity status of mosquitoes in Minepa-ARA, Muleba-GA, Burkina-GA and Muleba-Burkina-GA with out-of-sample accuracies of 81.9±2.8 (N = 274), 68.7±4.8 (N = 43), 80.3±2.0 (N = 48), and 75.7±2.5 (N = 91), respectively. With the autoencoder, ANN models tested on out-of-sample data achieved 97.1±2.2% (N = 274), 89.8 ± 1.7% (N = 43), 93.3±1.2% (N = 48), and 92.7±1.8% (N = 91) accuracies for Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-Burkina-GA, respectively. These results show that a combination of an autoencoder and an ANN trained on NIR spectra to estimate the parity status of wild mosquitoes yields models that can be used as an alternative tool to estimate parity status of wild mosquitoes, especially since NIRS is a high-throughput, reagent-free, and simple-to-use technique compared to ovary dissections

    Rapid and non-destructive detection and identification of two strains of Wolbachia in Aedes aegypti by near-infrared spectroscopy

    Get PDF
    The release of Wolbachia infected mosquitoes is likely to form a key component of disease control strategies in the near future. We investigated the potential of using near-infrared spectroscopy (NIRS) to simultaneously detect and identify two strains of Wolbachia pipientis (wMelPop and wMel) in male and female laboratory-reared Aedes aegypti mosquitoes. Our aim is to find faster, cheaper alternatives for monitoring those releases than the molecular diagnostic techniques that are currently in use. Our findings indicate that NIRS can differentiate females and males infected with wMelPop from uninfected wild type samples with an accuracy of 96% (N = 299) and 87.5% (N = 377), respectively. Similarly, females and males infected with wMel were differentiated from uninfected wild type samples with accuracies of 92% (N = 352) and 89% (N = 444). NIRS could differentiate wMelPop and wMel transinfected females with an accuracy of 96.6% (N = 442) and males with an accuracy of 84.5% (N = 443). This non-destructive technique is faster than the standard polymerase chain reaction diagnostic techniques. After the purchase of a NIRS spectrometer, the technique requires little sample processing and does not consume any reagents

    Detection of malaria parasites in dried human blood spots using mid-infrared spectroscopy and logistic regression analysis

    Get PDF
    Background: Epidemiological surveys of malaria currently rely on microscopy, polymerase chain reaction assays (PCR) or rapid diagnostic test kits for Plasmodium infections (RDTs). This study investigated whether mid-infrared (MIR) spectroscopy coupled with supervised machine learning could constitute an alternative method for rapid malaria screening, directly from dried human blood spots. Methods: Filter papers containing dried blood spots (DBS) were obtained from a cross-sectional malaria survey in 12 wards in southeastern Tanzania in 2018/19. The DBS were scanned using attenuated total reflection-Fourier Transform Infrared (ATR-FTIR) spectrometer to obtain high-resolution MIR spectra in the range 4000 cm−1 to 500 cm−1. The spectra were cleaned to compensate for atmospheric water vapour and CO2 interference bands and used to train different classification algorithms to distinguish between malaria-positive and malaria-negative DBS papers based on PCR test results as reference. The analysis considered 296 individuals, including 123 PCR-confirmed malaria positives and 173 negatives. Model training was done using 80% of the dataset, after which the best-fitting model was optimized by bootstrapping of 80/20 train/test-stratified splits. The trained models were evaluated by predicting Plasmodium falciparum positivity in the 20% validation set of DBS. Results: Logistic regression was the best-performing model. Considering PCR as reference, the models attained overall accuracies of 92% for predicting P. falciparum infections (specificity = 91.7%; sensitivity = 92.8%) and 85% for predicting mixed infections of P. falciparum and Plasmodium ovale (specificity = 85%, sensitivity = 85%) in the field-collected specimen. Conclusion: These results demonstrate that mid-infrared spectroscopy coupled with supervised machine learning (MIR-ML) could be used to screen for malaria parasites in human DBS. The approach could have potential for rapid and high-throughput screening of Plasmodium in both non-clinical settings (e.g., field surveys) and clinical settings (diagnosis to aid case management). However, before the approach can be used, we need additional field validation in other study sites with different parasite populations, and in-depth evaluation of the biological basis of the MIR signals. Improving the classification algorithms, and model training on larger datasets could also improve specificity and sensitivity. The MIR-ML spectroscopy system is physically robust, low-cost, and requires minimum maintenance

    First report on the application of near-infrared spectroscopy to predict the age of Aedes albopictus Skuse

    No full text
    To date, no methodology has been described for predicting the age of Aedes albopictus Skuse mosquitoes, commonly known as Asian tiger mosquitoes. In this study, we report the potential of near-infrared spectroscopy (NIRS) technique for characterizing the age of female laboratory reared Ae. albopictus. Using leave-one-out cross-validation analysis on a training set, laboratory reared mosquitoes preserved in RNAlater for up to a month were assessed at 1, 3, 7, 9, 13, 16, 20 and 25 days post emergence. Mosquitoes (N = 322) were differentiated into two age classes

    First Report of the Detection of DENV1 in Human Blood Plasma with Near-Infrared Spectroscopy

    No full text
    Dengue virus (DENV) is the world&rsquo;s most common arboviral infection, with an estimated 3.9 million people at risk of the infection, 100 million symptomatic cases and 10,000 deaths per year. Current diagnosis for DENV includes the use of molecular methods, such as polymerase chain reaction, which can be costly for routine use. The near-infrared spectroscopy (NIR) technique is a high throughput technique that involves shining a beam of infrared light on a biological sample, collecting a reflectance spectrum, and using machine learning algorithms to develop predictive algorithms. Here, we used NIR to detect DENV1 artificially introduced into whole blood, plasma, and serum collected from human donors. Machine learning algorithms were developed using artificial neural networks (ANN) and the resultant models were used to predict independent samples. DENV in plasma samples was detected with an overall accuracy, sensitivity, and specificity of 90% (N = 56), 88.5% (N = 28) and 92.3% (N = 28), respectively. However, a predictive sensitivity of 33.3% (N = 16) and 80% (N = 10) and specificity of 46.7% (N = 16) and 32% (N = 10) was achieved for detecting DENV1 in whole blood and serum samples, respectively. DENV1 peaks observed at 812 nm and 819 nm represent C-H stretch, peaks at 1130&ndash;1142 nm are related to methyl group and peaks at 2127 nm are related to saturated fatty groups. Our findings indicate the potential of NIR as a diagnostic tool for DENV, however, further work is recommended to assess its sensitivity for detecting DENV in people naturally infected with the virus and to determine its capacity to differentiate DENV serotypes and other arboviruses
    • …
    corecore