830 research outputs found

    Algorithms for Constructing Overlay Networks For Live Streaming

    Full text link
    We present a polynomial time approximation algorithm for constructing an overlay multicast network for streaming live media events over the Internet. The class of overlay networks constructed by our algorithm include networks used by Akamai Technologies to deliver live media events to a global audience with high fidelity. We construct networks consisting of three stages of nodes. The nodes in the first stage are the entry points that act as sources for the live streams. Each source forwards each of its streams to one or more nodes in the second stage that are called reflectors. A reflector can split an incoming stream into multiple identical outgoing streams, which are then sent on to nodes in the third and final stage that act as sinks and are located in edge networks near end-users. As the packets in a stream travel from one stage to the next, some of them may be lost. A sink combines the packets from multiple instances of the same stream (by reordering packets and discarding duplicates) to form a single instance of the stream with minimal loss. Our primary contribution is an algorithm that constructs an overlay network that provably satisfies capacity and reliability constraints to within a constant factor of optimal, and minimizes cost to within a logarithmic factor of optimal. Further in the common case where only the transmission costs are minimized, we show that our algorithm produces a solution that has cost within a factor of 2 of optimal. We also implement our algorithm and evaluate it on realistic traces derived from Akamai's live streaming network. Our empirical results show that our algorithm can be used to efficiently construct large-scale overlay networks in practice with near-optimal cost

    Early life mental health and problematic drinking in mid-adulthood: evidence from two British birth cohorts

    Get PDF
    PURPOSE: Accumulating evidence suggests that externalising problems are consistently associated with alcohol use behaviours, but findings are inconsistent regarding the role of internalising problems. We investigate whether externalising and internalising problems are associated with problematic drinking in mid-adulthood, and whether potential associations are modified by age, sex and cohort. METHODS: The National Child Development Study (NCDS58, n = 17,633) and 1970 British Cohort Study (BCS70, n = 17,568) recruited new-borns in Great Britain in a single week in 1958 and 1970. Mental health was assessed with the Rutter Behaviour Questionnaire at ages 7, 11, and 16 in NCDS58 and ages 5, 10 and 16 in BCS70. Problematic drinking was measured with the CAGE questionnaire at age 33 in NCDS58 and age 34 in BCS70, and the AUDIT scale at age 44/45 in NCDS58 and age 46 in BCS70. Latent scores of externalising and internalising problems were added chronologically into lagged logistic regression models. RESULTS: Externalising and internalising problems were associated in opposite directions with problematic drinking in mid-adulthood. Externalising was a risk factor (OR [95% CI] ranging from 1.06 [1.03, 1.10] to 1.11 [1.07, 1.15] for different ages), and internalising was a protective factor (OR [95% CI] ranging from 0.95 [0.92, 0.99] to 0.90 [0.86, 0.94] for different ages). Associations between early life mental health and mid-adulthood problematic drinking did not differ by developmental timing but were stronger in males. CONCLUSION: Our study provides new insights on links of externalising and internalising difficulties with alcohol use and has implications for public policy in the UK

    Numerical methods for fluctuation driven interactions between dielectrics

    Full text link
    We develop a discretized theory of thermal Casimir interactions to numerically calculate the interactions between fluctuating dielectrics. From a constrained partition function we derive a surface free energy, while handling divergences that depend on system size and discretization. We derive analytic results for parallel plate geometry in order to check the convergence of the numerical methods. We use the method to calculate vertical and lateral Casimir forces for a set of grooves.Comment: revtex, 20 page

    Anisotropic elasticity in confocal studies of colloidal crystals

    Full text link
    We consider the theory of fluctuations of a colloidal solid observed in a confocal slice. For a cubic crystal we study the evolution of the projected elastic properties as a function of the anisotropy of the crystal using numerical methods based on the fast Fourier transform. In certain situations of high symmetry we find exact analytic results for the projected fluctuations.Comment: 6 pages, 7 figure

    Probability distribution of the maximum of a smooth temporal signal

    Full text link
    We present an approximate calculation for the distribution of the maximum of a smooth stationary temporal signal X(t). As an application, we compute the persistence exponent associated to the probability that the process remains below a non-zero level M. When X(t) is a Gaussian process, our results are expressed explicitly in terms of the two-time correlation function, f(t)=.Comment: Final version (1 major typo corrected; better introduction). Accepted in Phys. Rev. Let

    Spatial Constraint Corrections to the Elasticity of dsDNA Measured with Magnetic Tweezers

    Full text link
    In this paper, we have studied, within a discrete WLC model, the spatial constraints in magnetic tweezers used in single molecule experiments. Two elements are involved: first, the fixed plastic slab on which is stuck the initial strand, second, the magnetic bead which pulls (or twists) the attached molecule free end. We have shown that the bead surface can be replaced by its tangent plane at the anchoring point, when it is close to the bead south pole relative to the force. We are led to a model with two parallel repulsive plates: the fixed anchoring plate and a fluctuating plate, simulating the bead, in thermal equilibrium with the system. The bead effect is a slight upper shift of the elongation, about four times smaller than the similar effect induced by the fixed plate. This rather unexpected result, has been qualitatively confirmed within the soluble Gaussian model. A study of the molecule elongation versus the countour length exhibits a significant non-extensive behaviour. The curve for short molecules (with less than 2 kbp) is well fitted by a straight line, with a slope given by the WLC model, but it does not go through the origin. The non-extensive offset gives a 15% upward shift to the elongation of a 2 kbp molecule stretched by a 0.3 pN force.Comment: 28 pages, 6 figures An explanatory figure has been added. The physical interpretation of the results has been made somewhat more transparen

    Energy gaps in quantum first-order mean-field-like transitions: The problems that quantum annealing cannot solve

    Full text link
    We study first-order quantum phase transitions in models where the mean-field traitment is exact, and the exponentially fast closure of the energy gap with the system size at the transition. We consider exactly solvable ferromagnetic models, and show that they reduce to the Grover problem in a particular limit. We compute the coefficient in the exponential closure of the gap using an instantonic approach, and discuss the (dire) consequences for quantum annealing.Comment: 6 pages, 3 figure

    Simulation of a semiflexible polymer in a narrow cylindrical pore

    Full text link
    The probability that a randomly accelerated particle in two dimensions has not yet left a simply connected domain A{\cal A} after a time tt decays as eE0te^{-E_0t} for long times. The same quantity E0E_0 also determines the confinement free energy per unit length Δf=kBTE0\Delta f=k_BT\thinspace E_0 of a semiflexible polymer in a narrow cylindrical pore with cross section A{\cal A}. From simulations of a randomly accelerated particle we estimate the universal amplitude of Δf\Delta f for both circular and rectangular cross sections.Comment: 10 pages, 2 eps figure

    Quantifying drivers of supplementary food use by a reintroduced, critically endangered passerine to inform management and habitat restoration

    Get PDF
    The provision of supplementary food is widely used in the management of endangered species. Typically, food is provided ad libitum and often without a planned exit strategy, which can be costly. The role supplementary food plays within population demography can be challenging to identify and therefore any reduction must be carefully considered to avoid negative impacts. Here we investigate the role supplementary food plays within a reintroduced population of a Critically Endangered passerine species by quantifying its use alongside intrinsic and extrinsic factors. Specifically, we illustrate how the provision of supplementary food could be refined in response to breeding stage and the time of food provisioning and, via habitat restoration, create a long-term exit strategy based on influential plant species. The consumption of supplementary food increases during energetically expensive phases of the breeding cycle, during the morning provision of food and when natural plant resource availability is low. We also show a pattern whereby supplementary food could act as a buffer during periods of low natural resource availability during breeding. Based on these findings short-term management could take a reactive approach; refining supplementary food supply in response to breeding stages of pairs and potentially removing the provision of food in the afternoon. In the long-term key plant species, found to correlate with a decrease in supplementary food consumption, could be incorporated into habitat restoration efforts which could create a continuous natural food supply and contribute to creating a self-sustaining population and a potential exit strategy

    Merging the cryptic genera radicilingua and calonitophyllum (Delesseriaceae, rhodophyta): Molecular phylogeny and taxonomic revision

    Get PDF
    Radicilingua Papenfuss and Calonitophyllum Aregood are two small genera of the family Delesseriaceae that consist of only three and one taxonomically accepted species, respectively. The type species of these genera, Radicilingua thy-sanorhizans from England and Calonitophyllum medium from the Americas, are morphologically very similar, with the only recognized differences being vein size and procarp development. To date, only other two species were recognized inside the genus Radicilingua: R. adriatica and R. reptans. In this study, we analysed specimens of Radicilingua collected in the Adriatic and Ionian Sea (Mediterranean), including a syntype locality of R. adriatica (Trieste, northern Adriatic Sea), alongside material from near the type locality of R. thysanorhizans (Torpoint, Cornwall, UK). The sequences of the rbcL-5P gene fragment here produced represent the first molecular data available for the genus Radicilingua. Phylogenetic reconstruction showed that the specimens from the Adriatic and Ionian Seas were genetically distinct from the Atlantic R. thysanorhizans, even if morphologically overlapping with this species. A detailed morphological descrip-tion of the Mediterranean specimens, together with an accurate literature search, suggested that they were distinct also from R. adriatica and R. reptans. For these reasons, a new species was here described to encompass the Mediterranean specimens investigated in this study: R. mediterranea Wolf, Sciuto & Sfriso. Moreover, in the rbcL-5P tree, sequences of the genera Radicilingua and Calonitophyllum grouped in a well-supported clade, distinct from the other genera of the subfamily Nitophylloideae, leading us to propose that Calonitophyllum medium should be transferred to Radicilingua
    corecore