106 research outputs found

    Scales of the Extra Dimensions and their Gravitational Wave Backgrounds

    Get PDF
    Circumstances are described in which symmetry breaking during the formation of our three-dimensional brane within a higher-dimensional space in the early universe excites mesoscopic classical radion or brane-displacement degrees of freedom and produces a detectable stochastic background of gravitational radiation. The spectrum of the background is related to the unification energy scale and the the sizes and numbers of large extra dimensions. It is shown that properties of the background observable by gravitational-wave observatories at frequencies f≈10−4f\approx 10^{-4} Hz to 10310^3 Hz contain information about unification on energy scales from 1 to 101010^{10} TeV, gravity propagating through extra-dimension sizes from 1 mm to 10−1810^{-18}mm, and the dynamical history and stabilization of from one to seven extra dimensions.Comment: 6 pages, Latex, 1 figure, submitted to Phys. Re

    Three point SUSY Ward identities without Ghosts

    Full text link
    We utilise a non-local gauge transform which renders the entire action of SUSY QED invariant and respects the SUSY algebra modulo the gauge-fixing condition, to derive two- and three-point ghost-free SUSY Ward identities in SUSY QED. We use the cluster decomposition principle to find the Green's function Ward identities and then takes linear combinations of the latter to derive identities for the proper functions.Comment: 20 pages, no figures, typos correcte

    Growth and Mechanical and Tribological Characterization of Multi-Layer Hard Carbon Films

    Get PDF
    Vacuum-arc deposition is used to deposit multilayer C films by modulating the sample bias during deposition. Effect of varying the sublayer thickness in multilayer films consisting of alternating layers of ``hard`` (68.4 GPa, -100 V bias) and ``soft`` (27.5 GPa, - 200 V bias) was investigated. Films consisting of equal thickness layers of hard and soft material and an individual layer thickness varying from 10 to 35 nm were deposited. Mechanical property measurements were obtained by finite element modeling of nanoindentation load-displacement curves. The film hardness values were about 20% below the average of the component layers and relatively independent of the layer thickness. TEM revealed deterioration of the multilayer structure when the sublayer thickness was below 15 nm due to implantation damage of the hard layers caused by the energetic C{sup +} ions of the soft layers (-2000 V bias) deposited over them. Pin-on-disk wear tests show that the wear rate drops when sublayer thickness is decreased below 20 nm and remains constant with further decreases in the layer thickness

    Novel approach to the study of quantum effects in the early universe

    Full text link
    We develop a theoretical frame for the study of classical and quantum gravitational waves based on the properties of a nonlinear ordinary differential equation for a function σ(η)\sigma(\eta) of the conformal time η\eta, called the auxiliary field equation. At the classical level, σ(η)\sigma(\eta) can be expressed by means of two independent solutions of the ''master equation'' to which the perturbed Einstein equations for the gravitational waves can be reduced. At the quantum level, all the significant physical quantities can be formulated using Bogolubov transformations and the operator quadratic Hamiltonian corresponding to the classical version of a damped parametrically excited oscillator where the varying mass is replaced by the square cosmological scale factor a2(η)a^{2}(\eta). A quantum approach to the generation of gravitational waves is proposed on the grounds of the previous η−\eta-dependent Hamiltonian. An estimate in terms of σ(η)\sigma(\eta) and a(η)a(\eta) of the destruction of quantum coherence due to the gravitational evolution and an exact expression for the phase of a gravitational wave corresponding to any value of η\eta are also obtained. We conclude by discussing a few applications to quasi-de Sitter and standard de Sitter scenarios.Comment: 20 pages, to appear on PRD. Already published background material has been either settled up in a more compact form or eliminate

    Studying the anisotropy of the gravitational wave stochastic background with LISA

    Get PDF
    A plethora of gravitational wave stochastic backgrounds populate the sensitivity window of the Laser Interferometer Space Antenna. We show that LISA can detect the anisotropy of the background corresponding to the multipole moments of order l=2 and 4. The signal-to-noise ratio generated by galactic white dwarf binary systems could be as high as 60 for 3 yrs of integration, and LISA could provide valuable information on the spatial distribution of a variety of galactic sources. We also show that the cross-correlation of the data sets from two interferometers could marginally lead to meaningful upper-limits on the degree of isotropy of the primordial gravitational wave background.Comment: 4 pages, uses RevTe

    Gravitational Radiation From Cosmological Turbulence

    Get PDF
    An injection of energy into the early Universe on a given characteristic length scale will result in turbulent motions of the primordial plasma. We calculate the stochastic background of gravitational radiation arising from a period of cosmological turbulence, using a simple model of isotropic Kolmogoroff turbulence produced in a cosmological phase transition. We also derive the gravitational radiation generated by magnetic fields arising from a dynamo operating during the period of turbulence. The resulting gravitational radiation background has a maximum amplitude comparable to the radiation background from the collision of bubbles in a first-order phase transition, but at a lower frequency, while the radiation from the induced magnetic fields is always subdominant to that from the turbulence itself. We briefly discuss the detectability of such a signal.Comment: 20 pages. Corrections for an errant factor of 2 in all the gravity wave characteristic amplitudes. Accepted for publication in Phys. Rev.

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
    • 

    corecore