4 research outputs found

    Non-Destructive Biomass Estimation in Mediterranean Alpha Steppes: Improving Traditional Methods for Measuring Dry and Green Fractions by Combining Proximal Remote Sensing Tools

    Get PDF
    The Mediterranean region is experiencing a stronger warming effect than other regions, which has generated a cascade of negative impacts on productivity, biodiversity, and stability of the ecosystem. To monitor ecosystem status and dynamics, aboveground biomass (AGB) is a good indicator, being a surrogate of many ecosystem functions and services and one of the main terrestrial carbon pools. Thus, accurate methodologies for AGB estimation are needed. This has been traditionally done by performing direct field measurements. However, field-based methods, such as biomass harvesting, are destructive, expensive, and time consuming and only provide punctual information, not being appropriate for large scale applications. Here, we propose a new non-destructive methodology for monitoring the spatiotemporal dynamics of AGB and green biomass (GB) of M. tenacissima L. plants by combining structural information obtained from terrestrial laser scanner (TLS) point clouds and spectral information. Our results demonstrate that the three volume measurement methods derived from the TLS point clouds tested (3D convex hull, voxel, and raster surface models) improved the results obtained by traditional field-based measurements. (Adjust-R2 = 0.86–0.84 and RMSE = 927.3–960.2 g for AGB in OLS regressions and Adjust-R2 = 0.93 and RMSE = 376.6–385.1 g for AGB in gradient boosting regression). Among the approaches, the voxel model at 5 cm of spatial resolution provided the best results; however, differences with the 3D convex hull and raster surface-based models were very small. We also found that by combining TLS AGB estimations with spectral information, green and dry biomass fraction can be accurately measured (Adjust-R2 = 0.65–0.56 and RMSE = 149.96–166.87 g in OLS regressions and Adjust-R2 = 0.96–0.97 and RMSE = 46.1–49.8 g in gradient boosting regression), which is critical in heterogeneous Mediterranean ecosystems in which AGB largely varies in response to climatic fluctuations. Thus, our results represent important progress for the measurement of M. tenacissima L. biomass and dynamics, providing a promising tool for calibration and validation of further studies aimed at developing new methodologies for AGB estimation at ecosystem regional scales

    Coupling sewage sludge amendment with cyanobacterial inoculation to enhance stability and carbon gain in dryland degraded soils

    Get PDF
    Sewage sludge (SS) is widely used as a soil conditioner in agricultural soil due to its high content of organic matter and nutrients. In addition, inoculants based on soil microorganisms, such as cyanobacteria, are being applied successfully in soil restoration to improve soil stability and fertility in agriculture. However, the combination of SS and cyanobacteria inoculation is an unexplored application that may be highly beneficial to soil. In this outdoor experiment, we studied the ability of cyanobacteria inoculum to grow on degraded soil amended with different concentrations of composted SS, and examined the effects of both SS concentration and cyanobacteria application on carbon gain and soil stability. We also explored the feasibility of using cyanobacteria for immobilizing salts in SS-amended soil. Our results showed that cyanobacteria growth increased in the soil amended with the lowest SS concentration tested (5 t ha−1, on soil 2 cm deep), as shown by its higher chlorophyll a content and associated deeper spectral absorption peak at 680 nm. At higher SS concentrations, inoculum growth decreased, which was attributed to competition of the inoculated cyanobacteria with the native SS bacterial community. However, SS significantly enhanced soil organic carbon gain and tightly-bound exopolysaccharide content. Cyanobacteria inoculation significantly improved soil stability and reduced soil’s wind erodibility. Moreover, it led to a decrease in the lixiviate electrical conductivity of salt-contaminated soils, indicating its potential for salt immobilization and soil bioremediation. Therefore, cyanobacteria inoculation, along with adequately dosed SS surface application, is an efficient strategy for improving carbon gain and surface stability in dryland agricultural soil

    Coupling Sewage Sludge Amendment with Cyanobacterial Inoculation to Enhance Stability and Carbon Gain in Dryland Degraded Soils

    No full text
    Sewage sludge (SS) is widely used as a soil conditioner in agricultural soil due to its high content of organic matter and nutrients. In addition, inoculants based on soil microorganisms, such as cyanobacteria, are being applied successfully in soil restoration to improve soil stability and fertility in agriculture. However, the combination of SS and cyanobacteria inoculation is an unexplored application that may be highly beneficial to soil. In this outdoor experiment, we studied the ability of cyanobacteria inoculum to grow on degraded soil amended with different concentrations of composted SS, and examined the effects of both SS concentration and cyanobacteria application on carbon gain and soil stability. We also explored the feasibility of using cyanobacteria for immobilizing salts in SS-amended soil. Our results showed that cyanobacteria growth increased in the soil amended with the lowest SS concentration tested (5 t ha−1, on soil 2 cm deep), as shown by its higher chlorophyll a content and associated deeper spectral absorption peak at 680 nm. At higher SS concentrations, inoculum growth decreased, which was attributed to competition of the inoculated cyanobacteria with the native SS bacterial community. However, SS significantly enhanced soil organic carbon gain and tightly-bound exopolysaccharide content. Cyanobacteria inoculation significantly improved soil stability and reduced soil’s wind erodibility. Moreover, it led to a decrease in the lixiviate electrical conductivity of salt-contaminated soils, indicating its potential for salt immobilization and soil bioremediation. Therefore, cyanobacteria inoculation, along with adequately dosed SS surface application, is an efficient strategy for improving carbon gain and surface stability in dryland agricultural soil

    Coupling Sewage Sludge Amendment with Cyanobacterial Inoculation to Enhance Stability and Carbon Gain in Dryland Degraded Soils

    No full text
    Sewage sludge (SS) is widely used as a soil conditioner in agricultural soil due to its high content of organic matter and nutrients. In addition, inoculants based on soil microorganisms, such as cyanobacteria, are being applied successfully in soil restoration to improve soil stability and fertility in agriculture. However, the combination of SS and cyanobacteria inoculation is an unexplored application that may be highly beneficial to soil. In this outdoor experiment, we studied the ability of cyanobacteria inoculum to grow on degraded soil amended with different concentrations of composted SS, and examined the effects of both SS concentration and cyanobacteria application on carbon gain and soil stability. We also explored the feasibility of using cyanobacteria for immobilizing salts in SS-amended soil. Our results showed that cyanobacteria growth increased in the soil amended with the lowest SS concentration tested (5 t ha−1, on soil 2 cm deep), as shown by its higher chlorophyll a content and associated deeper spectral absorption peak at 680 nm. At higher SS concentrations, inoculum growth decreased, which was attributed to competition of the inoculated cyanobacteria with the native SS bacterial community. However, SS significantly enhanced soil organic carbon gain and tightly-bound exopolysaccharide content. Cyanobacteria inoculation significantly improved soil stability and reduced soil’s wind erodibility. Moreover, it led to a decrease in the lixiviate electrical conductivity of salt-contaminated soils, indicating its potential for salt immobilization and soil bioremediation. Therefore, cyanobacteria inoculation, along with adequately dosed SS surface application, is an efficient strategy for improving carbon gain and surface stability in dryland agricultural soil
    corecore