2,577 research outputs found

    Not Always Sparse: Flooding Time in Partially Connected Mobile Ad Hoc Networks

    Full text link
    In this paper we study mobile ad hoc wireless networks using the notion of evolving connectivity graphs. In such systems, the connectivity changes over time due to the intermittent contacts of mobile terminals. In particular, we are interested in studying the expected flooding time when full connectivity cannot be ensured at each point in time. Even in this case, due to finite contact times durations, connected components may appear in the connectivity graph. Hence, this represents the intermediate case between extreme cases of fully mobile ad hoc networks and fully static ad hoc networks. By using a generalization of edge-Markovian graphs, we extend the existing models based on sparse scenarios to this intermediate case and calculate the expected flooding time. We also propose bounds that have reduced computational complexity. Finally, numerical results validate our models

    Estimation of indirect cost and evaluation of protective measures for infrastructure vulnerability: A case study on the transalpine transport corridor

    Get PDF
    Infrastructure vulnerability is a topic of rising interest in the scientific literature for both the general increase of unexpected events and the strategic importance of certain links. Protective investments are extremely costly and risks are distributed in space and time which poses important decision problems to the public sector decision makers. In an economic prospective, the evaluation of infrastructure vulnerability is oriented on the estimation of direct and indirect costs of hazards. Although the estimation of direct costs is straightforward, the evaluation of indirect cost involves factors non-directly observable making the approximation a difficult issue. This paper provides an estimate of the indirect costs caused by a two weeks closure of the north-south Gotthard road corridor, one of the most important infrastructure links in Europe, and implements a cost-benefit analysis tool that allows the evaluation of measures ensuring a full protection along the corridor. The identification of the indirect cost relies on the generalized cost estimation, which parameters come from two stated preference experiments, the first based on actual condition whereas the second assumes a road closure. The procedure outlined in this paper proposes a methodology aimed to identify and quantify the economic vulnerability associated with a road transport infrastructure and, to evaluate the economic and social efficiency of a vulnerability reduction by the consideration of protective measures.infrastructure vulnerability, choice experiment, cost-benefit analysis, freight transport

    Accounting for WTP/WTA discrepancy in discrete choice models: Discussion of policy implications based on two freight transport stated choice experiments

    Get PDF
    A key input in cost-benefit analysis is represented by the marginal rate of substitution which expresses the willingness to pay, or its counterpart willingness to accept, for both market and non-market goods. The consistent discrepancy between these two measures observed in the literature suggests the need to estimate reference dependent models able to capturing loss aversion by distinguishing the value attached to a gain from the value attached to a loss according to reference dependent theory. This paper proposes a comparison of willingness to pay and willingness to accept measures estimated from models with both symmetric and reference dependent utility specifications within two different freight transport stated choice experiments. The results show that the reference dependent specification outperforms the symmetric specification and they prove the robustness of reference dependent specification over datasets designed according different attributes levels ranges. Moreover we demonstrate the policy relevance of asymmetric specifications illustrating the strong implications for cost-benefit analysis in two case studies.WTP/WTA discrepancy, freight choice, policy evaluation

    Multi-Path Alpha-Fair Resource Allocation at Scale in Distributed Software Defined Networks

    Get PDF
    The performance of computer networks relies on how bandwidth is shared among different flows. Fair resource allocation is a challenging problem particularly when the flows evolve over time. To address this issue, bandwidth sharing techniques that quickly react to the traffic fluctuations are of interest, especially in large scale settings with hundreds of nodes and thousands of flows. In this context, we propose a distributed algorithm based on the Alternating Direction Method of Multipliers (ADMM) that tackles the multi-path fair resource allocation problem in a distributed SDN control architecture. Our ADMM-based algorithm continuously generates a sequence of resource allocation solutions converging to the fair allocation while always remaining feasible, a property that standard primal-dual decomposition methods often lack. Thanks to the distribution of all computer intensive operations, we demonstrate that we can handle large instances at scale

    Phoenix: DGA-Based Botnet Tracking and Intelligence

    Get PDF
    Abstract. Modern botnets rely on domain-generation algorithms (DGAs) to build resilient command-and-control infrastructures. Given the prevalence of this mechanism, recent work has focused on the anal-ysis of DNS traffic to recognize botnets based on their DGAs. While previous work has concentrated on detection, we focus on supporting intelligence operations. We propose Phoenix, a mechanism that, in ad-dition to telling DGA- and non-DGA-generated domains apart using a combination of string and IP-based features, characterizes the DGAs behind them, and, most importantly, finds groups of DGA-generated domains that are representative of the respective botnets. As a result, Phoenix can associate previously unknown DGA-generated domains to these groups, and produce novel knowledge about the evolving behavior of each tracked botnet. We evaluated Phoenix on 1,153,516 domains, in-cluding DGA-generated domains from modern, well-known botnets: with-out supervision, it correctly distinguished DGA- vs. non-DGA-generated domains in 94.8 percent of the cases, characterized families of domains that belonged to distinct DGAs, and helped researchers “on the field” in gathering intelligence on suspicious domains to identify the correct botnet.
    • …
    corecore