71 research outputs found
Algorithm and performance of a clinical IMRT beam-angle optimization system
This paper describes the algorithm and examines the performance of an IMRT
beam-angle optimization (BAO) system. In this algorithm successive sets of beam
angles are selected from a set of predefined directions using a fast simulated
annealing (FSA) algorithm. An IMRT beam-profile optimization is performed on
each generated set of beams. The IMRT optimization is accelerated by using a
fast dose calculation method that utilizes a precomputed dose kernel. A compact
kernel is constructed for each of the predefined beams prior to starting the
FSA algorithm. The IMRT optimizations during the BAO are then performed using
these kernels in a fast dose calculation engine. This technique allows the IMRT
optimization to be performed more than two orders of magnitude faster than a
similar optimization that uses a convolution dose calculation engine.Comment: Final version that appeared in Phys. Med. Biol. 48 (2003) 3191-3212.
Original EPS figures have been converted to PNG files due to size limi
Constraints on Variant Axion Models
A particular class of variant axion models with two higgs doublets and a
singlet is studied. In these models the axion couples either to the -quark
or -quark or both, but not to , , , or . When the axion couples
to only one quark the models possess the desirable feature of having no domain
wall problem, which makes them viable candidates for a cosmological axion
string scenario. We calculate the axion couplings to leptons, photons and
nucleons, and the astrophysical constraints on the axion decay constant
are investigated and compared to the DFSZ axion model. We find that the most
restrictive lower bound on , that from SN1987a, is lowered by up to a
factor of about 30, depending on the model and also the ratio of the vacuum
expectation values of the higgs doublets. For scenarios with axionic strings,
the allowed window for in the quark model can be more than two orders
of magnitude. For inflationary scenarios, the cosmological upper bound on
, where is the QCD anomaly factor, is unaffected: however, the
variant models have either 3 or 6 times smaller than the DFSZ model.Comment: 21pp RevTeX, 1 eps fig, uses graphics style, typo corrected, and
corrected file sent this time. To appear in Physical Review
Recommended from our members
AAPM medical physics practice guideline 10.a.: Scope of practice for clinical medical physics.
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline (MPPG) represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiation requires specific training, skills, and techniques as described in each document. As the review of the previous version of AAPM Professional Policy (PP)-17 (Scope of Practice) progressed, the writing group focused on one of the main goals: to have this document accepted by regulatory and accrediting bodies. After much discussion, it was decided that this goal would be better served through a MPPG. To further advance this goal, the text was updated to reflect the rationale and processes by which the activities in the scope of practice were identified and categorized. Lastly, the AAPM Professional Council believes that this document has benefitted from public comment which is part of the MPPG process but not the AAPM Professional Policy approval process. The following terms are used in the AAPM's MPPGs: Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances
Observation of the Hadronic Transitions Chi_{b 1,2}(2P) -> omega Upsilon(1S)
The CLEO Collaboration has observed the first hadronic transition among
bottomonium (b bbar) states other than the dipion transitions among vector
states, Upsilon(nS) -> pi pi Upsilon(mS). In our study of Upsilon(3S) decays,
we find a significant signal for Upsilon(3S) -> gamma omega Upsilon(1S) that is
consistent with radiative decays Upsilon(3S) -> gamma chi_{b 1,2}(2P), followed
by chi_{b 1,2} -> omega Upsilon(1S). The branching ratios we obtain are
Br(chi_{b1} -> omega Upsilon(1S) = 1.63 (+0.35 -0.31) (+0.16 -0.15) % and
Br(chi_{b2} -> omega Upsilon(1S) = 1.10 (+0.32 -0.28) (+0.11 - 0.10)%, in which
the first error is statistical and the second is systematic.Comment: submitted to XXI Intern'l Symp on Lepton and Photon Interact'ns at
High Energies, August 2003, Fermila
Quantification and predictors of prostate position variability in 50 patients evaluated with multiple CT scans during conformal radiotherapy.
PURPOSE: To determine the extent and predictors for prostatic motion in a large number of patients evaluated with multiple CT scans during radiotherapy, and evaluate the implications of these data on the design of appropriate treatment margins for patients receiving high-dose three-dimensional conformal radiotherapy. MATERIALS AND METHODS: Fifty patients underwent four serial computerized tomography (CT) scans, consisting of an initial planning scan and subsequent scans at the beginning, middle, and end of the treatment course. Each scan was performed with the patient in the prone treatment position within an immobilization device used during therapy. Contours of the prostate and seminal vesicles were drawn on the axial CT slices of each scan, and the scans were matched by alignment of the pelvic bones with a chamfer matching algorithm. Using the contour information, distributions of the displacement of the organ center of mass and organ border from the planning position were determined separately for the prostate and seminal vesicles in each of the three principle directions: anterior-posterior (AP), superior-inferior (SI) and left-right (LR). Each distribution was fitted to a normal (Gaussian) distribution to determine confidence limits in the center of mass and border displacements and thereby evaluate for the optimal margins needed to contain target motion. RESULTS: The most common directions of displacement of the prostate center of mass (COM) were in the AP and SI directions and were significantly larger than any LR movement. The mean prostate COM displacement (+/- 1 standard deviation, SD) for the entire population was -1.2 +/- 2.9 mm, -0.5 +/- 3.3 mm and -0.6 +/- 0.8 mm in the, AP and SI and LR directions respectively (negative values indicate posterior, inferior or left displacement). The mean (+/- 1 SD) seminal vesicle COM displacement for the entire population was - 1.4 +/- 4.9 mm, 1.3 +/- 5.5 mm and -0.8 +/- 3.1 mm in the AP and SI and LR directions, respectively. The data indicate a tendency for the population towards posterior displacements of the prostate from the planning position and both posterior and superior displacements of the seminal vesicles. AP movement of both the prostate and seminal vesicles were correlated with changes in rectal volume (P = 0.0014 and <0.0001, respectively) more than with changes in bladder volume (P = 0.030 for seminal vesicles and 0.19 for prostate). A logistic regression analysis identified the combination of rectal volume > 60 cm3 and bladder volumes > 40 cm3 as the only predictor of large ( > 3 mm) systematic deviations for the prostate and seminal vesicles (P = 0.05) defined for each patient as the difference between organ position in the planning scan and mean position as calculated from the three subsequent scans. CONCLUSIONS: Prostatic displacement during a course of radiotherapy is more pronounced among patients with initial planning scans with large rectal and bladder volumes. Such patients may require more generous margins around the CTV to assure its enclosure within the prescription dose region. Identification and correction of patients with large systematic errors will minimize the extent of the margin required and decrease the volume of normal tissue exposed to higher radiation doses
Time trends in organ position and volume in patients receiving prostate three-dimensional conformal radiotherapy.
Using multiple computed tomography (CT) scans, 50 patients undergoing prostate radiotherapy were tested for clinically significant time trends in the target and surrounding critical structures. Significant trends were observed toward increasing bladder volume and increasing bowel-to-planning target volume separation; however, no trends were observed in the prostate, seminal vesicles, or rectum. The subset of patients undergoing hormone therapy was also tested and did not independently exhibit any significant time trend
A multiobjective gradient-based dose optimization algorithm for external beam conformal radiotherapy
- …