21 research outputs found

    Dysregulated B cell function and disease pathogenesis in systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is a complex, immune-mediated rheumatic disease characterised by excessive extracellular matrix deposition in the skin and internal organs. B cell infiltration into lesional sites such as the alveolar interstitium and small blood vessels, alongside the production of defined clinically relevant autoantibodies indicates that B cells play a fundamental role in the pathogenesis and development of SSc. This is supported by B cell and fibroblast coculture experiments revealing that B cells directly enhance collagen and extracellular matrix synthesis in fibroblasts. In addition, B cells from SSc patients produce large amounts of profibrotic cytokines such as IL-6 and TGF-β, which interact with other immune and endothelial cells, promoting the profibrotic loop. Furthermore, total B cell counts are increased in SSc patients compared with healthy donors and specific differences can be found in the content of naïve, memory, transitional and regulatory B cell compartments. B cells from SSc patients also show differential expression of activation markers such as CD19 which may shape interactions with other immune mediators such as T follicular helper cells and dendritic cells. The key role of B cells in SSc is further supported by the therapeutic benefit of B cell depletion with rituximab in some patients. It is notable also that B cell signaling is impaired in SSc patients, and this could underpin the failure to induce tolerance in B cells as has been shown in murine models of scleroderma

    TLR expression profiles are a function of disease status in rheumatoid arthritis and experimental arthritis

    Get PDF
    The role of the innate immune system has been established in the initiation and perpetuation of inflammatory disease, but less attention has been paid to its role in the resolution of inflammation and return to homeostasis. Toll-like receptor (TLR) expression profiles were analysed in tissues with differing disease status in rheumatoid arthritis (RA), ankylosing spondylitis (AS), and in experimental arthritis. TLR gene expression was measured in whole blood and monocytes, before and after TNF blockade. In RA and osteoarthritis synovia, the expression of TLRs was quantified by standard curve qPCR. In addition, four distinct stages of disease were defined and validated in collagen-induced arthritis (CIA), the gold standard animal model for RA - pre-onset, early disease, late disease and immunised mice that were resistant to the development of disease. TLR expression was measured in spleens, lymph nodes, blood cells, liver and the paws (inflamed and unaffected). In RA whole blood, the expression of TLR1, 4 and 6 was significantly reduced by TNF blockade but the differences in TLR expression profiles between responders and non-responders were less pronounced than the differences between RA and AS patients. In RA non-responders, monocytes had greater TLR2 expression prior to therapy compared to responders. The expression of TLR1, 2, 4 and 8 was higher in RA synovium compared to control OA synovium. Circulating cytokine levels in CIA resistant mice were similar to naïve mice, but anti-collagen antibodies were similar to arthritic mice. Distinct profiles of inflammatory gene expression were mapped in paws and organs with differing disease status. TLR expression in arthritic paws tended to be similar in early and late disease, with TLR1 and 2 moderately higher in late disease. TLR expression in unaffected paws varied according to gene and disease status but was generally lower in resistant paws. Disease status-specific profiles of TLR expression were observed in spleens, lymph nodes, blood cells and the liver. Notably, TLR2 expression rose then fell in the transition from naïve to pre-onset to early arthritis. TLR gene expression profiles are strongly associated with disease status. In particular, increased expression in the blood precedes clinical manifestation

    CD4 +

    No full text

    Altered patterns of epigenetic changes in systemic lupus erythematosus and auto-antibody production: is there a link?

    No full text
    International audienceThe prominent feature of immunological defects in systemic lupus erythematosus (SLE) is the production of autoantibodies (auto-Abs) to nuclear antigens including DNA, histones and RNP. In addition, there is growing evidence that epigenetic changes play a key role in the pathogenesis of SLE. Autoreactive CD4(+) T cells and B cells in patients with SLE have evidence of altered patterns of DNA methylation as well as post-translational modifications of histones and ribonucleoproteins (RNP). A key question that has emerged from these two characteristic features of SLE is whether the two processes are linked. New data provide support for such a link. For example, there is evidence that hypomethylated DNA is immunogenic, that anti-histone auto-Abs in patients with SLE bind epigenetic-sensitive hot spots and that epigenetically-modified RNP-derived peptides can modulate lupus disease. All in all, the available evidence indicates that a better understanding of dysregulation in epigenetics in SLE may offer opportunities to develop new biomarkers and novel therapeutic strategies

    IL-10 production by B cells expressing CD5 with the alternative exon 1B.

    No full text
    B lymphocytes are divided into two subpopulations, B1 and B2 cells based on expression of the T cell-associated protein CD5. Natural B1 cells are further divided into B1a cells that express CD5 on their membrane and B1b cells that do not but share most other biological characteristics of B1a cells. Recent studies from our laboratory have revealed, in humans, the existence of two alternative isoforms of the CD5 protein. A cell surface CD5 isoform which uses exon 1A (E1A) of the gene in B1a cells, and an intracellular isoform which uses exon 1B (E1B) mainly in human B1b cells. Indeed, the protein isoform encoded by transcripts containing E1B lack the leader peptide and is, thus, retained in the cytoplasm of B cells. The restriction of interleukin (IL)-10 to B1 lymphocytes in the mouse raises the possibility that the human CD5-E1B-expressing B cells produce IL-10. This prediction was confirmed in the CD5 negative Jok-1 B cells transfected with cDNA for either isoforms resulted in high level IL-10 production. Our data indicate that E1B-CD5-expressing B cells have the capacity to interfere with the immune response through their ability to produce high levels of IL-10.Journal ArticleResearch Support, Non-U.S. Gov'tFLWINinfo:eu-repo/semantics/publishe
    corecore