4 research outputs found

    Human intramuscular hyperimmune gamma globulin (hIHGG) Anti-SARS-CoV-2 : characteristics of intermediates and final product

    No full text
    This study aims to characterize the intermediates, and the final product (FP) obtained during the production of human intramuscular hyperimmune gamma globulin anti-SARS-CoV-2 (hIHGG anti-SARS-CoV-2) and to determine its stability. Material and methods: hIHGG anti-SARS-CoV-2 was fractionated from 270 convalescent plasma donations with the Cohn method. Prior to fractionation, the plasma was inactivated (Theraflex MB Plasma). Samples were defined using enzyme immunoassays (EIA) for anti-S1, anti-RBD S1, and anti-N antibodies, and neutralization assays with SARS-CoV-2 (VN) and pseudoviruses (PVN, decorated with SARS-CoV-2 S protein). Results were expressed as a titer (EIA) or 50% of the neutralization titer (IC50) estimated in a four-parameter nonlinear regression model. Results: Concentration of anti-S1 antibodies in plasma was similar before and after inactivation. Following fractionation, the anti-S1, anti-RBD, and anti-N (total tests) titers in FP were concentrated approximately 15-fold from 1:4 to 1:63 (1800 BAU/mL), 7-fold from 1:111 to 1:802 and from 1:13 to 1:88, respectively. During production, the IgA (anti-S1) antibody titer was reduced to an undetectable level and the IgM (anti-RBD) titer from 1:115 to 1:24. The neutralizing antibodies (nAb) titer increased in both VN (from 1:40 to 1:160) and PVN (IC50 from 63 to 313). The concentration of specific IgG in the FP did not change significantly for 14 months. Conclusions: The hIHGG anti-SARS-CoV-2 was stable, with concentration up to approximately 15-fold nAb compared to the source plasma pool

    An international review of the characteristics of viral nucleic acid-amplification testing (NAT) reveals a trend towards the use of smaller pool sizes and individual donation NAT

    No full text
    Background and Objectives: Nucleic acid-amplification testing (NAT) is used forscreening blood donations/donors for blood-borne viruses. We reviewed global viralNAT characteristics and NAT-yield confirmatory testing used by blood operators.Materials and Methods: NAT characteristics and NAT-yield confirmatory testingused during 2019 was surveyed internationally by the International Society of Blood Transfusion Working Party Transfusion-Transmitted Infectious Diseases. Reportedcharacteristics are presented herein.Results: NAT was mainly performed under government mandate. Human immunodeficiency virus (HIV), hepatitis C virus (HCV) and hepatitis B virus (HBV) NAT was performed on all donors and donation types, while selective testing was reported forWest Nile virus, hepatitis E virus (HEV), and Zika virus. Individual donation NAT wasused for HIV, HCV and HBV by 50% of responders, while HEV was screened inmini-pools by 83% of responders performing HEV NAT. Confirmatory testing forNAT-yield samples was generally performed by NAT on a sample from the samedonation or by NAT and serology on samples from the same donation and a followup sample.Conclusion: In the last decade, there has been a trend towards use of smaller poolsizes or individual donation NAT. We captured characteristics of NAT internationallyin 2019 and provide insights into confirmatory testing approaches used for NATyields, potentially benefitting blood operators seeking to implement NAT.Fil: Faddy, Helen M.. University of the Sunshine Coast. School of Health; Australia. Australian Red Cross Lifeblood; AustraliaFil: Osiowy, Carla. Public Health Agency. National Microbiology Laboratory; CanadáFil: Custer, Brian. Vitalant Research Institute; Estados Unidos. University of California; Estados UnidosFil: Busch, Michael. Vitalant Research Institute; Estados UnidosFil: Stramer, Susan L.. Infectious Disease Consultant; Estados UnidosFil: Dean, Melinda M.. University of the Sunshine Coast. School of Health; Australia. Australian Red Cross Lifeblood; AustraliaFil: Acutt, Jessika. University of the Sunshine Coast. School of Health; AustraliaFil: Viennet, Elvina. Australian Red Cross Lifeblood; AustraliaFil: van de Laar, Thijs. Sanquin Research; Países BajosFil: Tsoi, Wai-Chiu. Hong Kong Red Cross Blood Transfusion Service; Hong KongFil: Styles, Claire. Australian Red Cross Lifeblood; AustraliaFil: Kiely, Phil. Australian Red Cross Lifeblood; AustraliaFil: Margaritis, Angelo. Australian Red Cross Lifeblood; AustraliaFil: Kwon, So-Yong. Korean Red Cross Blood Services; Corea del SurFil: Qiu, Yan. Beijing Red Cross Blood Centre; ChinaFil: Deng, Xuelian. Dalian Blood Centre; ChinaFil: Lewin, Antoine. Medical Affairs And Innovation; CanadáFil: Jørgensen, Signe Winther. University Aarhus; DinamarcaFil: Erikstrup, Christian. University Aarhus; DinamarcaFil: Juhl, David. University Hospital Of Schleswig-holstein; AlemaniaFil: Sauleda, Silvia. Banc de Sang I Teixits de Catalunya; EspañaFil: Camacho Rodriguez, Bernardo Armando. Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud; ColombiaFil: Soto Coral, Lisbeth Jennifer Catherine. Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud; ColombiaFil: Gaviria García, Paula Andrea. Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud; ColombiaFil: Oota, Sineenart. Thai Red Cross Society; TailandiaFil: O'Brien, Sheila F.. Canadian Blood Service; CanadáFil: Wendel, Silvano. Hospital Sírio-Libanês Blood Bank; BrasilFil: Castro, Emma. Centro de Transfusión de la Comunidad Valenciana; EspañaFil: Navarro Pérez, Laura. Centro de Transfusión de la Comunidad Valenciana; EspañaFil: Harvala, Heli. NHS Blood and Transplant; Reino UnidoFil: Davison, Katy. NHSBT/UKHSA Epidemiology Unit; Reino UnidoFil: Reynolds, Claire. NHSBT/UKHSA Epidemiology Unit; Reino UnidoFil: Jarvis, Lisa. Scottish National Blood Transfusion Service; Reino UnidoFil: Grabarczyk, Piotr. Institute of Hematology and Transfusion Medicine; PoloniaFil: Kopacz, Aneta. Institute of Hematology and Transfusion Medicine; PoloniaFil: Letowska, Magdalena. Institute of Hematology and Transfusion Medicine; PoloniaFil: O'Flaherty, Niamh. Irish Blood Transfusion Service; IrlandaFil: Young, Fiona. Irish Blood Transfusion Service; IrlandaFil: Williams, Padraig. Irish Blood Transfusion Service; IrlandaFil: Burke, Lisa. Irish Blood Transfusion Service; IrlandaFil: Chua, Sze Sze. Health Sciences Authority; SingapurFil: Muylaert, An. Red Cross Flanders; BélgicaFil: Page, Isabel. Centro de Hemoterapia y Hemodonacion de Castilla y Leon; EspañaFil: Jones, Ann. Welsh Blood Service; Reino UnidoFil: Niederhauser, Christoph. Interregional Blood Transfusion SRC; SuizaFil: Vermeulen, Marion. The South African National Blood Service; SudáfricaFil: Laperche, Syria. Etablissement Français du Sang; FranciaFil: Gallian, Pierre. Etablissement Français du Sang; FranciaFil: Satake, Masahiro. Japanese Red Cross Blood Service; JapónFil: Addas Carvalho, Marcelo. Blood Center of Universidade Estadual de Campinas; BrasilFil: Blanco, Sebastian. Fundacion Banco Central de Sangre; ArgentinaFil: Gallego, Sandra Veronica. Universidad Nacional de Córdoba. Facultad de Medicina. Instituto de Virología Dr. J. M. Vanella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Seltsam, Axel. Bavarian Red Cross Blood Donation Service; AlemaniaFil: Weber Schehl, Marijke. Bavarian Red Cross Blood Donation Service; AlemaniaFil: Al-Riyami, Arwa Z.. Sultan Qaboos University Hospital; OmánFil: Al Maamari, Khuloud. Sultan Qaboos University Hospital; OmánFil: Alawi, Fatma Ba. Sultan Qaboos University Hospital; OmánFil: Pandey, Hem Chandra. All India Institute of Medical Sciences; IndiaFil: França, Rochele Azevedo. Regional Blood Center of Ribeirão Preto; BrasilFil: Charlewood, Richard. New Zealand Blood Service; Nueva Zeland
    corecore