11 research outputs found

    Tauroursodeoxycholate—Bile Acid with Chaperoning Activity: Molecular and Cellular Effects and Therapeutic Perspectives

    No full text
    Tauroursodeoxycholic acid (TUDCA) is a naturally occurring hydrophilic bile acid that has been used for centuries in Chinese medicine. Chemically, TUDCA is a taurine conjugate of ursodeoxycholic acid (UDCA), which in contemporary pharmacology is approved by Food and Drug Administration (FDA) for treatment of primary biliary cholangitis. Interestingly, numerous recent studies demonstrate that mechanisms of TUDCA functioning extend beyond hepatobiliary disorders. Thus, TUDCA has been demonstrated to display potential therapeutic benefits in various models of many diseases such as diabetes, obesity, and neurodegenerative diseases, mostly due to its cytoprotective effect. The mechanisms underlying this cytoprotective activity have been mainly attributed to alleviation of endoplasmic reticulum (ER) stress and stabilization of the unfolded protein response (UPR), which contributed to naming TUDCA as a chemical chaperone. Apart from that, TUDCA has also been found to reduce oxidative stress, suppress apoptosis, and decrease inflammation in many in-vitro and in-vivo models of various diseases. The latest research suggests that TUDCA can also play a role as an epigenetic modulator and act as therapeutic agent in certain types of cancer. Nevertheless, despite the massive amount of evidence demonstrating positive effects of TUDCA in pre-clinical studies, there are certain limitations restraining its wide use in patients. Here, molecular and cellular modes of action of TUDCA are described and therapeutic opportunities and limitations of this bile acid are discussed

    Monitoring of the Surface Charge Density Changes of Human Glioblastoma Cell Membranes upon Cinnamic and Ferulic Acids Treatment

    No full text
    Cinnamic acid (CA) and ferulic acid (FA) are naturally occurring phenolic acids claimed to exert beneficial effects against disorders related to oxidative stress, including cancer. One such malignancy that still remains a therapeutic challenge mainly due to its heterogeneity and inaccessibility to therapeutic agents is Glioblastoma multiforme (GBM). Here, the influence of CA and FA on the surface charge density of human GBM cell line LN-229 was studied using the electrophoretic light scattering technique. Also, the cytotoxicity of both phenolic acids was determined by metabolic activity-assessing tetrazolium test (MTT) analysis after exposure to CA and FA for 24 h and 48 h. Results showed that both compounds reduced cell viability of LN-229 cells, with more pronounced effect evoked by CA as reflected in IC50 values. Further analyses demonstrated that, after treatment with both phenolic acids, the negative charge of membranes decreased at high pH values and the positive charge of the membranes increased at low pH values compared to the data obtained for untreated cells. Afterward, a four-equilibrium model was applied to estimate the total surface concentrations of both acidic and basic functional groups and their association constants with solution ions in order to calculate theoretical values of membrane surface charge densities. Then, the theoretical data were compared to the experimental data in order to verify the mathematical model. As such, our results indicate that application of electrochemical methods to determine specific drug–membrane interactions might be crucial for predicting their pharmacological activity and bioavailability

    A Preliminary Study of the Effect of Quercetin on Cytotoxicity, Apoptosis, and Stress Responses in Glioblastoma Cell Lines

    No full text
    A growing body of evidence indicates that dietary polyphenols show protective effects against various cancers. However, little is known yet about their activity in brain tumors. Here we investigated the interaction of dietary flavonoid quercetin (QCT) with the human glioblastoma A172 and LBC3 cell lines. We demonstrated that QCT evoked cytotoxic effect in both tested cell lines. Microscopic observations, Annexin V-FITC/PI staining, and elevated expression and activity of caspase 3/7 showed that QCT caused predominantly apoptotic death of A172 cells. Further analyses confirmed enhanced ROS generation, deregulated expression of SOD1 and SOD2, depletion of ATP levels, and an overexpression of CHOP, suggesting the activation of oxidative stress and ER stress upon QCT exposure. Finally, elevated expression and activity of caspase 9, indicative of a mitochondrial pathway of apoptosis, was detected. Conversely, in LBC3 cells the pro-apoptotic effect was observed only after 24 h incubation with QCT, and a shift towards necrotic cell death was observed after 48 h of treatment. Altogether, our data indicate that exposure to QCT evoked cell death via activation of intrinsic pathway of apoptosis in A172 cells. These findings suggest that QCT is worth further investigation as a potential pharmacological agent in therapy of brain tumors

    Molecular and Cellular Effects of Chemical Chaperone—TUDCA on ER-Stressed NHAC-kn Human Articular Chondrocytes Cultured in Normoxic and Hypoxic Conditions

    No full text
    Osteoarthritis (OA) is considered one of the most common arthritic diseases characterized by progressive degradation and abnormal remodeling of articular cartilage. Potential therapeutics for OA aim at restoring proper chondrocyte functioning and inhibiting apoptosis. Previous studies have demonstrated that tauroursodeoxycholic acid (TUDCA) showed anti-inflammatory and anti-apoptotic activity in many models of various diseases, acting mainly via alleviation of endoplasmic reticulum (ER) stress. However, little is known about cytoprotective effects of TUDCA on chondrocyte cells. The present study was designed to evaluate potential effects of TUDCA on interleukin-1β (IL-1β) and tunicamycin (TNC)-stimulated NHAC-kn chondrocytes cultured in normoxic and hypoxic conditions. Our results showed that TUDCA alleviated ER stress in TNC-treated chondrocytes, as demonstrated by reduced CHOP expression; however, it was not effective enough to prevent apoptosis of NHAC-kn cells in either normoxia nor hypoxia. However, co-treatment with TUDCA alleviated inflammatory response induced by IL-1β, as shown by down regulation of Il-1β, Il-6, Il-8 and Cox2, and increased the expression of antioxidant enzyme Sod2. Additionally, TUDCA enhanced Col IIα expression in IL-1β- and TNC-stimulated cells, but only in normoxic conditions. Altogether, these results suggest that although TUDCA may display chondoprotective potential in ER-stressed cells, further analyses are still necessary to fully confirm its possible recommendation as potential candidate in OA therapy

    The Effects of Silica Nanoparticles on Apoptosis and Autophagy of Glioblastoma Cell Lines

    No full text
    Silica nanoparticles (SiNPs) are one of the most commonly used nanomaterials in various medical applications. However, possible mechanisms of the toxicity caused by SiNPs remain unclear. The study presented here provides novel information on molecular and cellular effects of SiNPs in glioblastoma LBC3 and LN-18 cells. It has been demonstrated that SiNPs of 7 nm, 5–15 nm and 10–20 nm induce time- and dose-dependent cytotoxicity in LBC3 and LN-18 cell lines. In contrast to glioblastoma cells, we observed only weak reduction in viability of normal skin fibroblasts treated with SiNPs. Furthermore, in LBC3 cells treated with 5–15 nm SiNPs we noticed induction of apoptosis and necrosis, while in LN-18 cells only necrosis. The 5–15 nm SiNPs were also found to cause oxidative stress, a loss in mitochondrial membrane potential, and changes in the ultrastructure of the mitochondria in LBC3 cells. Quantitative real-time PCR results showed that in LBC3 cells the mRNA levels of pro-apoptotic genes Bim, Bax, Puma, and Noxa were significantly upregulated. An increase in activity of caspase-9 in these cells was also observed. Moreover, the activation of SiNP-induced autophagy was demonstrated in LBC3 cells as shown by an increase in LC3-II/LC3-I ratio, the upregulation of Atg5 gene and an increase in AVOs-positive cells. In conclusion, this research provides novel information concerning molecular mechanisms of apoptosis and autophagy in LBC3 cells

    Modulation of Cardiovascular Function in Primary Hypertension in Rat by SKA-31, an Activator of KCa2.x and KCa3.1 Channels

    No full text
    The aim of this study was to investigate the hemodynamic effects of SKA-31, an activator of the small (KCa2.x) and intermediate (KCa3.1) conductance calcium-activated potassium channels, and to evaluate its influence on endothelium-derived hyperpolarization (EDH)-KCa2.3/KCa3.1 type relaxation in isolated endothelium-intact small mesenteric arteries (sMAs) from spontaneously hypertensive rats (SHRs). Functional in vivo and in vitro experiments were performed on SHRs or their normotensive controls, Wistar-Kyoto rats (WKY). SKA-31 (1, 3 and 10 mg/kg) caused a brief decrease in blood pressure and bradycardia in both SHR and WKY rats. In phenylephrine-pre-constricted sMAs of SHRs, SKA-31 (0.01–10 µM)-mediated relaxation was reduced and SKA-31 potentiated acetylcholine-evoked endothelium-dependent relaxation. Endothelium denudation and inhibition of nitric oxide synthase (eNOS) and cyclooxygenase (COX) by the respective inhibitors l-NAME or indomethacin, attenuated SKA-31-mediated vasorelaxation. The inhibition of KCa3.1, KCa2.3, KIR and Na+/K+-ATPase by TRAM-34, UCL1684, Ba2+ and ouabain, respectively, reduced the potency and efficacy of the EDH-response evoked by SKA-31. The mRNA expression of eNOS, prostacyclin synthase, KCa2.3, KCa3.1 and KIR were decreased, while Na+/K+-ATPase expression was increased. Collectively, SKA-31 promoted hypotension and vasodilatation, potentiated agonist-stimulated vasodilation, and maintained KCa2.3/KCa3.1-EDH-response in sMAs of SHR with downstream signaling that involved KIR and Na+/K+-ATPase channels. In view of the importance of the dysfunction of endothelium-mediated vasodilatation in the mechanism of hypertension, application of activators of KCa2.3/KCa3.1 channels such as SKA-31 seem to be a promising avenue in pharmacotherapy of hypertension

    The Phenotype of the Adipocytes Derived from Subcutaneous and Visceral ADMSCs Is Altered When They Originate from Morbidly Obese Women: Is There a Memory Effect?

    No full text
    Adipose tissue is an abundant source of mesenchymal stem cells (ADMSCs). Evidence has suggested that depot-specific ADMSCs (obtained from subcutaneous or visceral adipose tissue–subADMSCs or visADMSCs, respectively) account for differential responses of each depot to metabolic challenges. However, little is known about the phenotype and changes in metabolism of the adipocytes derived from ADMSCs of obese individuals. Therefore, we investigated the phenotypic and metabolic characteristics, particularly the lipid profile, of fully differentiated adipocytes derived from ADMSCs of lean and obese (with/without metabolic syndrome) postmenopausal women. We observed a depot-specific pattern, with more pronounced changes present in the adipocytes obtained from subADMSCs. Namely, chronic oversupply of fatty acids (present in morbid obesity) triggered an increase in CD36/SR-B2 and FATP4 protein content (total and cell surface), which translated to an increased LCFA influx (3H-palmitate uptake). This was associated with the accumulation of TAG and DAG in these cells. Furthermore, we observed that the adipocytes of visADMSCs origin were larger and showed smaller granularity than their counterparts of subADMSCs descent. Although ADMSCs were cultured in vitro, in a fatty acids-deprived environment, obesity significantly influenced the functionality of the progenitor adipocytes, suggesting the existence of a memory effect

    GPR18-mediated relaxation of human isolated pulmonary arteries

    No full text
    GPR18 receptor protein was detected in the heart and vasculature and appears to play a functional role in the cardiovascular system. We investigated the effects of the new GPR18 agonists PSB-MZ-1415 and PSB-MZ-1440 and the new GPR18 antagonist PSB-CB-27 on isolated human pulmonary arteries (hPAs) and compared their effects with the previously proposed, but unconfirmed, GPR18 ligands NAGly, Abn-CBD (agonists) and O-1918 (antagonist). GPR18 expression in hPAs was shown at the mRNA level. PSB-MZ-1415, PSB-MZ-1440, NAGly and Abn-CBD fully relaxed endothelium-intact hPAs precontracted with the thromboxane A(2) analog U46619. PSB-CB-27 shifted the concentration-response curves (CRCs) of PSB-MZ-1415, PSB-MZ-1440, NAGly and Abn-CBD to the right; O-1918 caused rightward shifts of the CRCs of PSB-MZ-1415 and NAGly. Endothelium removal diminished the potency and the maximum effect of PSB-MZ-1415. The potency of PSB-MZ-1415 or NAGly was reduced in male patients, smokers and patients with hypercholesterolemia. In conclusion, the novel GPR18 agonists, PSB-MZ-1415 and PSB-MZ-1440, relax hPAs and the effect is inhibited by the new GPR18 antagonist PSB-CB-27. GPR18, which appears to exhibit lower activity in hPAs from male, smoking or hypercholesterolemic patients, may become a new target for the treatment of pulmonary arterial hypertension
    corecore