5,577 research outputs found

    An obstacle to populating the string theory landscape

    Get PDF
    We construct domain walls and instantons in a class of models with coupled scalar fields, determining, in agreement with previous studies, that many such solutions contain naked timelike singularities. Vacuum bubble solutions of this type do not contain a region of true vacuum, obstructing the ability of eternal inflation to populate other vacua. We determine a criterion that potentials must satisfy to avoid the existence of such singularities, and show that many domain wall solutions in Type IIB string theory are singular. This has profound implications for applying the program of eternal inflation to making predictions in the string theory landscape.Comment: 5 PRD style pages with 2 embedded figures. Replaced to match published versio

    Field dynamics and tunneling in a flux landscape

    Get PDF
    We investigate field dynamics and tunneling between metastable minima in a landscape of Type IIB flux compactifications, utilizing monodromies of the complex structure moduli space to continuously connect flux vacua. After describing the generic features of a flux-induced potential for the complex structure and Type IIB axio-dilaton, we specialize to the Mirror Quintic Calabi--Yau to obtain an example landscape. Studying the cosmological dynamics of the complex structure moduli, we find that the potential generically does not support slow-roll inflation and that in general the landscape separates neatly into basins of attraction of the various minima. We then discuss tunneling, with the inclusion of gravitational effects, in many-dimensional field spaces. A set of constraints on the form of the Euclidean paths through field space are presented, and then applied to construct approximate instantons mediating the transition between de Sitter vacua in the flux landscape. We find that these instantons are generically thick-wall and that the tunneling rate is suppressed in the large-volume limit. We also consider examples where supersymmetry is not broken by fluxes, in which case near-BPS thin-wall bubbles can be constructed. We calculate the bubble wall tension, finding that it scales like a D- or NS-brane bubble, and comment on the implications of this correspondence. Finally, we present a brief discussion of eternal inflation in the flux-landscape.Comment: 23 PRD-style pages with 11 embedded figures. Added refs, corrected typos, and clarified Sec. V. Replaced to match published versio

    Runaway dilatonic domain walls

    Get PDF
    We explore the stability of domain wall and bubble solutions in theories with compact extra dimensions. The energy density stored inside of the wall can destabilize the volume modulus of a compactification, leading to solutions containing either a timelike singularity or a region where space decompactifies, depending on the metric ansatz. We determine the structure of such solutions both analytically and using numerical simulations, and analyze how they arise in compactifications of Einstein--Maxwell theory and Type IIB string theory. The existence of instabilities has important implications for the formation of networks of topological defects and the population of vacua during eternal inflation.Comment: 29 pages with 19 figures. Replaced to match published versio

    General relativistic effects in quantum interference of photons

    Full text link
    Quantum mechanics and general relativity have been extensively and independently confirmed in many experiments. However, the interplay of the two theories has never been tested: all experiments that measured the influence of gravity on quantum systems are consistent with non-relativistic, Newtonian gravity. On the other hand, all tests of general relativity can be described within the framework of classical physics. Here we discuss a quantum interference experiment with single photons that can probe quantum mechanics in curved space-time. We consider a single photon travelling in superposition along two paths in an interferometer, with each arm experiencing a different gravitational time dilation. If the difference in the time dilations is comparable with the photon's coherence time, the visibility of the quantum interference is predicted to drop, while for shorter time dilations the effect of gravity will result only in a relative phase shift between the two arms. We discuss what aspects of the interplay between quantum mechanics and general relativity are probed in such experiments and analyze the experimental feasibility.Comment: 16 pages, new appendix, published versio

    Book review: will the Middle East implode? by Mohammed Ayoob

    Get PDF
    The Arab Spring has boosted both mainstream and radical Islamism, heightened the prospects of a third intifada, and exacerbated regional power rivalry in the Middle East. When adding these dynamics to the stalling Israel-Palestine conflict and ever-tense U.S.-Iran relations, the Middle East faces the prospect of a major implosion or a series of smaller, interconnected ones that could have implications for regional global security, argues Mohammed Ayoob. Magdalena C. Delgado finds this to be an accessible and analytically rich book suitable for general readers looking for an up to date account of the topic
    • …
    corecore