10 research outputs found

    USE OF HPLC, Py-GCMS, FTIR METHODS IN THE STUDIES OF THE COMPOSITION OF SOIL DISSOLVED ORGANIC MATTER

    Get PDF
    The study has determined the composition of dissolved organic matter in Luvisols, Fluvisols and Histosols using spectroscopic (FTIR) and chromatographic (HPLC and Py-GCMS) methods. It has been found that aliphatic hydrocarbons (linear) containing from 4 to 12 atoms of carbon constitute the dominant group of compounds included in the dissolved organic matter (DOC). The preparations isolated from Histosols and Luvisols demonstrated a higher proportion of hydrophobic fraction with a longer retention time probably containing more compounds with long-chain aliphatic and simple aromatic structure than the DOC of Fluvisols. The differences in infrared spectra are evident particularly in the wave number between 1650–1030 cm-1. The DOC of Histosols is richer in aromatic compounds (range 1620 cm-1) but the DOC of Luvisols and Fluvisols is richer in alkene chains and hydroxyl (OH) and methoxy (OCH3) groups. The results showed differences in the composition of the DOM across the soils, caused their genesis. W pracy badano skład rozpuszczalnej materii organicznej (RMO) gleb (Luvisols, Fluvisols and Histosols) przy zastosowaniu metod spektroskopowych (FTIR) oraz chromatograficznych (HPLC i Py-GCMS). Stwierdzono, że dominującą grupą związków wchodzących w skład RMO są węglowodory alifatyczne (łańcuchowe) zawierające od 4 do 12 atomów węgla. Preparaty RMO wyizolowane z torfu i gleby płowej charakteryzujące się wyższym udziałem frakcji hydrofobowych o najdłuższym czasie retencji, zawierały najprawdopodobniej więcej związków o długich łańcuchach alifatycznych oraz proste struktury aromatyczne w porównaniu z RMO mady. Przebieg widm w podczerwieni wyraźnie wskazał różnicę w składzie badanych preparatów RMO, szczególnie w zakresie liczb falowych między 1650-1030 cm-1. Preparaty RMO wyizolowane z torfu były bogatsze w związki aromatyczne (pasmo 1620 cm-1) a frakcja RMO wyizolowana z gleby płowej i mady ciężkiej była bogatsza w łańcuchy alkenowe i grupy hydroksylowe (OH) i metoksylowe (OCH3). Otrzymane wyniki badań wykazały różnice w składzie RMO pomiędzy glebami, wynikające z ich genezy

    STABILITY OF ORGANIC MATER OF HAPLIC CHERNOZEM AND HAPLIC LUVISOL OF DIFFERENT ECOSYSTEMS

    Get PDF
    In this study, the changes in soil organic matter (SOM) and the possibilities of their monitoring in a shorter period of time by means of carbon parameters were followed. The experiment includes four ecosystems (forest, meadow, urban, and agro-ecosystem) on Haplic Chernozem (Močenok, Horná Kráľová, Trnava) and Haplic Luvisol (Ludanice, Veľké Zálužie, Lovce) of different localities. The objectives of this study were assessment of the differences in the stability of soil organic matter in different ecosystems and in soil types using labile forms of carbon and nitrogen, and also with dependence on particle size distribution. The highest contents of total organic carbon (TOC) and labile carbon (CL) were in a forest ecosystem, but in case of other ecosystems, the differences were determined only in the contents of CL. After forest ecosystem, the highest content of CL was in agro-ecosystem > meadow ecosystem > urban ecosystem. Based on parameter of lability of carbon (LC), the most labile carbon can be evaluated also in the forest ecosystem (0.209) > agro-ecosystem (0.178) > meadow ecosystem (0.119) and urban ecosystem (0.116). In the case of nitrogen, the differences were observed between the soils. Higher contents of NT and NL were recorded in Haplic Chernozen than in Haplic Luvisol. Contents of TOC (P < 0.05; r = -0.480), CNL (P < 0.05; r = -0.480), and NL (P < 0.01; r = -0.545) were in a negative correlation with the content of sand fraction. The values of studied parameters in meadow and urban ecosystems were relatively balanced, because in both cases, the vegetation cover were grass, pointing to a significant influence of vegetation on the parameters of SOM

    Organic Matter in Riverbank Sediments and Fluvisols from the Flood Zones of Lower Vistula River

    No full text
    The research objective of this study was to determine whether and to what extent the form of use of Fluvisols (arable soil and grassland) of a Lower Vistula floodplain valley (Fordonska Valley, Poland) determined their relative organic matter properties, as compared with nearby riverbank sediments. Riverbank sediments were sampled from a depth of 0–20 cm, and soil samples from 0 to30 cm, all in three replicates. Basic physico-chemical soil properties were determined: texture, pH, and the contents of total organic carbon (TOC), total nitrogen (TN), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). Humic acids (HAs) were extracted by the Schnitzer method and analysed to assess their spectrometric parameters in the UV–VIS range and hydrophilic and hydrophobic properties. Riverbank sediment samples contained significantly lower TOC and TN contents than Fluvisols, regardless of land-use type. The TOC, TN, DOC and DON contents and properties of humic acids in the Fluvisol surface layer depended on land-use type, because the arable soils had significantly lower TOC, TN, DOC and DON contents than the grasslands, despite having a similar grain size (texture). Based on the A2/4, A2/6, A4/6 ratios, it was found that HA molecules isolated from the humus horizon of arable soils had a higher degree of maturity than HAs isolated from grassland soil samples. The spectrometric properties of humic acids isolated from riverbank sediments showed a higher degree of maturity than those from Fluvisols. This research showed that the properties of humic acids in Fluvisols are determined by the quantity and quality of organic matter transported in suspended matter that accumulates annually in flood valleys during flood events. The current land-use type of Fluvisols significantly influenced the properties of organic matter, and thus of humic acids. Therefore, these properties can be used to evaluate the transformation of organic matter that occurs in Fluvisols depending on the type of use

    Organic Matter Properties of Spent Button Mushroom Substrate in the Context of Soil Organic Matter Reproduction

    No full text
    The objective of the work was to evaluate selected properties of spent substrates used for growing button mushrooms (SMSs) and the content and quality of the organic matter in this material in the context of rational use for fertilisation purposes and potential impact on the soil environment. The materials were sampled at production facilities located in the east of Mazovia. The density and amount of spent substrate on shelves where mushrooms were cultivated were determined. The following were analysed in the laboratory: reaction, carbonate content, TC (total carbon) and TOC (total organic carbon) contents, total nitrogen, organic matter fraction composition, and humic acids properties. It was confirmed that this material had a marked potential to enrich soils in organic matter, nitrogen, and carbonates. The analysis revealed that the most important qualitative properties of the organic matter were related to the relatively high share of labile organic compounds (the fraction separated with 0.05 M H2SO4 and the fraction of fulvic acids). The humic acids had similar properties regardless of their origins. The humic acids (HAs) molecules displayed a substantial share of aliphatic structures which are typical of these materials at their initial decomposition stage. It can be assumed that, due to such properties, spent mushroom substrates are materials which can be directly introduced into the soil to improve their quality and prevent degradation

    SOIL POLLUTION OF SELECTED PAHS AS A FACTOR AFFECTING THE PROPERTIES OF HUMIC ACIDS

    No full text
    It is well-known that the properties of humus soil substances (including humic acids) are soil-type-specific. However, one shall consider the fact that properties of organic matter of soil can be modified by farming system (crop rotation, fertilisation) as well as other external factors, including pollutants; PAHs. The objective of the paper is to determine the effect of a single-time pollution of soils with high rates of PAHs on the properties of humic acids. The research was performed with the samples of soils representative for the Kujawy and Pomorze Region (Phaeozems, Luvisol, Haplic Arenosols, Fluvisols). Soil samples were polluted with selected PAHs; fluorene, anthracene, pyrene and chrysene at the amount corresponding to 100 mg PAHs · kg-1. Treatments, i.e., soils + PAHs, were incubated for 180 and 360 days at the temperature of 20–25 ºC and at constant moisture of 50 % of field water capacity. Humic acids were extracted from the soil samples prior to and after 180 and 360 days of incubation. The following analyses were performed for separating humic acids: elemental composition, UV-VIS and IR spectrophotometric analyses, susceptibility to oxidation. Results demonstrated that a single introduction of fluorene, anthracene, pyrene and chrysene at very high rates into soils affects the properties of humic acids. There was mostly recorded a decrease in coefficients of absorbance A2/6 and A4/6, an increase in the parameter defining the susceptibility of humic acids to oxidation. There were also noted changes in the pattern of spectra in infrared and the values of the parameter defining the degree of internal oxidation of the humic acids molecules

    Organic Matter Properties of Spent Button Mushroom Substrate in the Context of Soil Organic Matter Reproduction

    No full text
    The objective of the work was to evaluate selected properties of spent substrates used for growing button mushrooms (SMSs) and the content and quality of the organic matter in this material in the context of rational use for fertilisation purposes and potential impact on the soil environment. The materials were sampled at production facilities located in the east of Mazovia. The density and amount of spent substrate on shelves where mushrooms were cultivated were determined. The following were analysed in the laboratory: reaction, carbonate content, TC (total carbon) and TOC (total organic carbon) contents, total nitrogen, organic matter fraction composition, and humic acids properties. It was confirmed that this material had a marked potential to enrich soils in organic matter, nitrogen, and carbonates. The analysis revealed that the most important qualitative properties of the organic matter were related to the relatively high share of labile organic compounds (the fraction separated with 0.05 M H2SO4 and the fraction of fulvic acids). The humic acids had similar properties regardless of their origins. The humic acids (HAs) molecules displayed a substantial share of aliphatic structures which are typical of these materials at their initial decomposition stage. It can be assumed that, due to such properties, spent mushroom substrates are materials which can be directly introduced into the soil to improve their quality and prevent degradation

    Soil Fertility Improvement and Carbon Sequestration through Exogenous Organic Matter and Biostimulant Application

    No full text
    One of the main tasks in the search for environmentally friendly crop-growing methods is to increase soil fertility by improving its physical, chemical and biological parameters. The aim of this study was to determine the effect that the long-term annual application of different types of soil fertility agents (exogenous organic matter: 1. manure, 2. straw in combination with nitrogen fertilization and liming and 3. the addition of biostimulants) had on organic matter properties, including humic acid (HAs) properties. The research was carried out on the basis of soil samples from a ten-year pot experiment which was set up as single-factor pot experiment with four replications. PVC pots with perforated bottoms were filled with soil samples taken from the tilled layer of an arable field where winter wheat was grown in monoculture. The pots were exposed directly to the weather and were left without vegetation. The soil samples were assayed for the content of total organic carbon (TOC), total nitrogen and fractional composition of humus. HAs were extracted with the Schnitzer method and analyzed for the elemental composition, spectrometric parameters in the FT-IR and UV-VIS range and hydrophilic and hydrophobic properties. In addition, EPR spectra were produced. The results showed that the content of organic matter compared to soil without additives increased with the use of manure and the use of straw in the CaO variant and in the form of a mulch. The content of dissolved organic carbon (DOC) ranged from 124.6 to 286.1 mg kg&minus;1 and had strong positive correlation with TOC content. The values of the ratio of carbon content in humic acids to carbon content in fulvic acids (CHAs/CFAs) ranged from 0.71 to 0.99. The use of a biostimulator&mdash;with or without the addition of straw&mdash;increased carbon sequestration in humic acid molecules, as well as their oxidation level and their share of hydrophobic fractions with the longest retention time. Thus, the addition of UGmax intensifies humification processes, leading to the formation of stable humic acid molecules

    Influence of Plant Growth Retardants and Nitrogen Doses on the Content of Plant Secondary Metabolites in Wheat, the Presence of Pests, and Soil Quality Parameters

    No full text
    Wheat is the cereal most susceptible to lodging, particularly during the flowering period and at the early ripening stage. The use of plant growth retardants (PGRs) is especially recommended when intensive nitrogen (N) fertilisation is applied, which increases the susceptibility of plants to lodging. This paper presents the results of tests into the effects of PGRs (PGR0—control; PGR1—chlormequat chloride (CCC) + trinexapac-ethyl (TE); PGR2—chlormequat chloride (CCC) + ethephon (ET)), and N dose—N0, N20, N40, and N60 [0, 20, 40, and 60 kg N ha−1] on the content of selected plant secondary metabolites (PSM) in the Indian dwarf wheat (Triticum sphaerococcum Percival) of the Trispa cultivar, and on the abundance of insect pests. In the developmental stage of wheat (BBCH 39), insects were collected with an entomological net. The study also investigated the effect of experimental factors on the physicobiochemical properties of the soil (pH in KC, granulometric composition, total organic carbon TOC, total nitrogen TN, fractional composition of humus, and the activity of enzymes). An increase in the plant secondary metabolite (PSM) and FRAP (ferring reducing ability of plasma) contents following the application of PGRs and N fertilisation already from as low a rate as 20 kg ha−1 was demonstrated. A significant positive correlation was noted between the abundance of Oulema spp. and the contents of total polyphenols, chlorogenic acid, and FRAP. No such relationship was noted for Aphididae or Thysanoptera. TOC content was higher on the plots on which N fertilisation was applied at the highest rate and after the application of PGRs. The factor determining the TN content was N fertilisation. Soil samples of the PGR0 N0 treatment were characterised by the greatest proportion of carbon in the humic and fulvic acid fractions and by the smallest proportion of carbon in the humin fraction. N fertilisation increased the proportion of carbon in the humin fraction on the plots on which no PGRs were applied. The study demonstrated an increase in the activity of oxidoreductive enzymes following the application of higher N rates. The application of PGRs resulted in no inhibition of enzymes in the soil compared to the control (PGRs0)
    corecore