19 research outputs found
Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial
Background Non-alcoholic steatohepatitis (NASH) is a common type of chronic liver disease that can lead to cirrhosis. Obeticholic acid, a farnesoid X receptor agonist, has been shown to improve the histological features of NASH. Here we report results from a planned interim analysis of an ongoing, phase 3 study of obeticholic acid for NASH. Methods In this multicentre, randomised, double-blind, placebo-controlled study, adult patients with definite NASH,non-alcoholic fatty liver disease (NAFLD) activity score of at least 4, and fibrosis stages F2âF3, or F1 with at least oneaccompanying comorbidity, were randomly assigned using an interactive web response system in a 1:1:1 ratio to receive oral placebo, obeticholic acid 10 mg, or obeticholic acid 25 mg daily. Patients were excluded if cirrhosis, other chronic liver disease, elevated alcohol consumption, or confounding conditions were present. The primary endpointsfor the month-18 interim analysis were fibrosis improvement (â„1 stage) with no worsening of NASH, or NASH resolution with no worsening of fibrosis, with the study considered successful if either primary endpoint was met. Primary analyses were done by intention to treat, in patients with fibrosis stage F2âF3 who received at least one dose of treatment and reached, or would have reached, the month 18 visit by the prespecified interim analysis cutoff date. The study also evaluated other histological and biochemical markers of NASH and fibrosis, and safety. This study is ongoing, and registered with ClinicalTrials.gov, NCT02548351, and EudraCT, 20150-025601-6. Findings Between Dec 9, 2015, and Oct 26, 2018, 1968 patients with stage F1âF3 fibrosis were enrolled and received at least one dose of study treatment; 931 patients with stage F2âF3 fibrosis were included in the primary analysis (311 in the placebo group, 312 in the obeticholic acid 10 mg group, and 308 in the obeticholic acid 25 mg group). The fibrosis improvement endpoint was achieved by 37 (12%) patients in the placebo group, 55 (18%) in the obeticholic acid 10 mg group (p=0·045), and 71 (23%) in the obeticholic acid 25 mg group (p=0·0002). The NASH resolution endpoint was not met (25 [8%] patients in the placebo group, 35 [11%] in the obeticholic acid 10 mg group [p=0·18], and 36 [12%] in the obeticholic acid 25 mg group [p=0·13]). In the safety population (1968 patients with fibrosis stages F1âF3), the most common adverse event was pruritus (123 [19%] in the placebo group, 183 [28%] in the obeticholic acid 10 mg group, and 336 [51%] in the obeticholic acid 25 mg group); incidence was generally mild to moderate in severity. The overall safety profile was similar to that in previous studies, and incidence of serious adverse events was similar across treatment groups (75 [11%] patients in the placebo group, 72 [11%] in the obeticholic acid 10 mg group, and 93 [14%] in the obeticholic acid 25 mg group). Interpretation Obeticholic acid 25 mg significantly improved fibrosis and key components of NASH disease activity among patients with NASH. The results from this planned interim analysis show clinically significant histological improvement that is reasonably likely to predict clinical benefit. This study is ongoing to assess clinical outcomes
TAG-RNAi overcomes off-target effects in cancer models
International audienceRNA interference offers therapeutic opportunities for the clinical targeting of otherwise undruggable oncogenes. However RNAi can have off-target effects that considerably increase treatment risks. To manage these side effects and allow an easy subtraction of their activity in healthy tissues, we present here the TAG-RNAi approach where cells that are not designated targets do not have the mRNA tag. Using TAG-RNAi we first established the off-target signatures of three different siRNAs specific to the Cyclin D1 oncogene by RNA-sequencing of cultured cancer cells expressing a FLAG-HA-tagged-Cyclin D1. Then, by symmetrical allografts of tagged-cancer cells and untagged controls on the left and right flanks of model mice, we demonstrate that TAG-RNAi is a reliable approach to study the functional impact of any oncogene without off-target bias. Finally we show, as examples, that mutation-specific TAG-RNAi can be applied to downregulate two oncogenic mutants, KRAS-G12V or BRAF-V600E, while sparing the expression of the wild-type proteins. TAG-RNAi will thus avoid the traditional off-target limitations of RNAi in future experimental approaches
The transcription factor E2F1 controls the GLP-1 receptor pathway in pancreatic ÎČ cells
International audienc
Glucose Regulates m6A Methylation of RNA in Pancreatic Islets
Type 2 diabetes is characterized by chronic hyperglycemia associated with impaired insulin action and secretion. Although the heritability of type 2 diabetes is high, the environment, including blood components, could play a major role in the development of the disease. Amongst environmental effects, epitranscriptomic modifications have been recently shown to affect gene expression and glucose homeostasis. The epitranscriptome is characterized by reversible chemical changes in RNA, with one of the most prevalent being the m6A methylation of RNA. Since pancreatic β cells fine tune glucose levels and play a major role in type 2 diabetes physiopathology, we hypothesized that the environment, through variations in blood glucose or blood free fatty acid concentrations, could induce changes in m6A methylation of RNAs in pancreatic β cells. Here we observe a significant decrease in m6A methylation upon high glucose concentration, both in mice and human islets, associated with altered expression levels of m6A demethylases. In addition, the use of siRNA and/or specific inhibitors against selected m6A enzymes demonstrate that these enzymes modulate the expression of genes involved in pancreatic β-cell identity and glucose-stimulated insulin secretion. Our data suggest that environmental variations, such as glucose, control m6A methylation in pancreatic β cells, playing a key role in the control of gene expression and pancreatic β-cell functions. Our results highlight novel causes and new mechanisms potentially involved in type 2 diabetes physiopathology and may contribute to a better understanding of the etiology of this disease
Development of a robotic and computer vision method to assess foam quality in sparkling wines
Quality assessment of food products and beverages might be performed by the human senses of smell, taste, sound and touch. Likewise, sparkling wines and carbonated beverages are fundamentally assessed by sensory evaluation. Computer vision is an emerging technique that has been applied in the food industry to objectively assist quality and process control. However, publications describing the application of this novel technology to carbonated beverages are scarce, as the methodology requires tailored techniques to address the presence of carbonation and foamability. Here we present a robotic pourer (FIZZeyeRobot), which normalizes the variability of foam and bubble development during pouring into a vessel. It is coupled with video capture to assess several parameters of foam quality, including foamability (the ability of the foam to form) drainability (the ability of the foam to resist drainage) and bubble count and allometry. The foam parameters investigated were analyzed in combination to the wines scores, chemical parameters obtained from laboratory analysis and manual measurements for validation purposes. Results showed that higher quality scores from trained panelists were positively correlated with foam stability and negatively correlated with the velocity of foam dissipation and the height of the collar. Significant correlations were observed between the wine quality measurements of total protein, titratable acidity, pH and foam expansion. The percentage of the wine in the foam was found to promote the formation of smaller bubbles and to reduce foamability, while drainability was negatively correlated to foam stability and positively correlated with the duration of the collar. Finally, wines were grouped according to their foam and bubble characteristics, quality scores and chemical parameters. The technique developed in this study objectively assessed foam characteristics of sparkling wines using image analysis whilst maintaining a cost-effective, fast, repeatable and reliable robotic method. Relationships between wine composition, bubble and foam parameters obtained automatically, might assist in unraveling factors contributing to wine quality and directions for further research
Iatrogenic arterial vasospasm during mechanical thrombectomy requiring treatment with intraâarterial nimodipine might be associated with worse outcomes
International audienceAbstract Background and Purpose Vasospasm is a common iatrogenic event during mechanical thrombectomy (MT). In such circumstances, intraâarterial nimodipine administration is occasionally considered. However, its use in the treatment of iatrogenic vasospasm during MT has been poorly studied. We investigated the impact of iatrogenic vasospasm treated with intraâarterial nimodipine on outcomes after MT for large vessel occlusion stroke. Methods We conducted a retrospective analysis of the multicenter observational registry Endovascular Treatment in Ischemic Stroke (ETIS). Consecutive patients treated with MT between January 2015 and December 2022 were included. Patients treated with medical treatment alone, without MT, were excluded. We also excluded patients who received another in situ vasodilator molecule during the procedure. Outcomes were compared according to the occurrence of cervical and/or intracranial arterial vasospasm requiring intraoperative use of in situ nimodipine based on operator's decision, using a propensity score approach. The primary outcome was a modified Rankin Scale (mRS) score of 0â2 at 90âdays. Secondary outcomes included excellent outcome (mRS score 0â1), final recanalization, mortality, intracranial hemorrhage and procedural complications. Secondary analyses were performed according to the vasospasm location (intracranial or cervical). Results Among 13,678 patients in the registry during the study period, 434 received intraâarterial nimodipine for the treatment of MTârelated vasospasm. In the main analysis, comparable odds of favorable outcome were observed, whereas excellent outcome was significantly less frequent in the group with vasospasm requiring nimodipine (adjusted odds ratio [aOR]â0.78, 95% confidence interval [CI] 0.63â0.97). Perfect recanalization, defined as a final modified Thrombolysis In Cerebral Infarction score of 3 (aORâ0.63, 95% CI 0.42â0.93), was also rarer in the vasospasm group. Intracranial vasospasm treated with nimodipine was significantly associated with worse clinical outcome (aOR 0.64, 95% CI 0.45â0.92), in contrast to the cervical location (aORâ1.37, 95% CI 0.54â3.08). Conclusion Arterial vasospasm occurring during the MT procedure and requiring intraâarterial nimodipine administration was associated with worse outcomes, especially in case of intracranial vasospasm. Although this study cannot formally differentiate whether the negative consequences were due to the vasospasm itself, or nimodipine administration or both, there might be an important signal toward a substantial clinical impact of iatrogenic vasospasm during MT
Iatrogenic arterial vasospasm during mechanical thrombectomy requiring treatment with intraâarterial nimodipine might be associated with worse outcomes
International audienceAbstract Background and Purpose Vasospasm is a common iatrogenic event during mechanical thrombectomy (MT). In such circumstances, intraâarterial nimodipine administration is occasionally considered. However, its use in the treatment of iatrogenic vasospasm during MT has been poorly studied. We investigated the impact of iatrogenic vasospasm treated with intraâarterial nimodipine on outcomes after MT for large vessel occlusion stroke. Methods We conducted a retrospective analysis of the multicenter observational registry Endovascular Treatment in Ischemic Stroke (ETIS). Consecutive patients treated with MT between January 2015 and December 2022 were included. Patients treated with medical treatment alone, without MT, were excluded. We also excluded patients who received another in situ vasodilator molecule during the procedure. Outcomes were compared according to the occurrence of cervical and/or intracranial arterial vasospasm requiring intraoperative use of in situ nimodipine based on operator's decision, using a propensity score approach. The primary outcome was a modified Rankin Scale (mRS) score of 0â2 at 90âdays. Secondary outcomes included excellent outcome (mRS score 0â1), final recanalization, mortality, intracranial hemorrhage and procedural complications. Secondary analyses were performed according to the vasospasm location (intracranial or cervical). Results Among 13,678 patients in the registry during the study period, 434 received intraâarterial nimodipine for the treatment of MTârelated vasospasm. In the main analysis, comparable odds of favorable outcome were observed, whereas excellent outcome was significantly less frequent in the group with vasospasm requiring nimodipine (adjusted odds ratio [aOR]â0.78, 95% confidence interval [CI] 0.63â0.97). Perfect recanalization, defined as a final modified Thrombolysis In Cerebral Infarction score of 3 (aORâ0.63, 95% CI 0.42â0.93), was also rarer in the vasospasm group. Intracranial vasospasm treated with nimodipine was significantly associated with worse clinical outcome (aOR 0.64, 95% CI 0.45â0.92), in contrast to the cervical location (aORâ1.37, 95% CI 0.54â3.08). Conclusion Arterial vasospasm occurring during the MT procedure and requiring intraâarterial nimodipine administration was associated with worse outcomes, especially in case of intracranial vasospasm. Although this study cannot formally differentiate whether the negative consequences were due to the vasospasm itself, or nimodipine administration or both, there might be an important signal toward a substantial clinical impact of iatrogenic vasospasm during MT
Pharmacological HDAC inhibition impairs pancreatic ÎČ-cell function through an epigenome-wide reprogramming
Summary: Histone deacetylases enzymes (HDACs) are chromatin modifiers that regulate gene expression through deacetylation of lysine residues within specific histone and non-histone proteins. A cell-specific gene expression pattern defines the identity of insulin-producing pancreatic ÎČ cells, yet molecular networks driving this transcriptional specificity are not fully understood. Here, we investigated the HDAC-dependent molecular mechanisms controlling pancreatic ÎČ-cell identity and function using the pan-HDAC inhibitor trichostatin A through chromatin immunoprecipitation assays and RNA sequencing experiments. We observed that TSA alters insulin secretion associated with ÎČ-cell specific transcriptome programming in both mouse and human ÎČ-cell lines, as well as on human pancreatic islets. We also demonstrated that this alternative ÎČ-cell transcriptional program in response to HDAC inhibition is related to an epigenome-wide remodeling at both promoters and enhancers. Our data indicate that HDAC activity could be required to protect against loss of ÎČ-cell identity with unsuitable expression of genes associated with alternative cell fates
Formation of Foamy Macrophages by Tuberculous Pleural Effusions Is Triggered by the Interleukin-10/Signal Transducer and Activator of Transcription 3 Axis through ACAT Upregulation
The ability of Mycobacterium tuberculosis (Mtb) to persist in its human host relies on numerous immune evasion strategies, such as the deregulation of the lipid metabolism leading to the formation of foamy macrophages (FM). Yet, the specific host factors leading to the foamy phenotype of Mtb-infected macrophages remain unknown. Herein, we aimed to address whether host cytokines contribute to FM formation in the context of Mtb infection. Our approach is based on the use of an acellular fraction of tuberculous pleural effusions (TB-PE) as a physiological source of local factors released during Mtb infection. We found that TB-PE induced FM differentiation as observed by the increase in lipid bodies, intracellular cholesterol, and expression of the scavenger receptor CD36, as well as the enzyme acyl CoA:cholesterol acyl transferase (ACAT). Importantly, interleukin-10 (IL-10) depletion from TB-PE prevented the augmentation of all these parameters. Moreover, we observed a positive correlation between the levels of IL-10 and the number of lipid-laden CD14+ cells among the pleural cells in TB patients, demonstrating that FM differentiation occurs within the pleural environment. Downstream of IL-10 signaling, we noticed that the transcription factor signal transducer and activator of transcription 3 was activated by TB-PE, and its chemical inhibition prevented the accumulation of lipid bodies and ACAT expression in macrophages. In terms of the host immune response, TB-PE-treated macrophages displayed immunosuppressive properties and bore higher bacillary loads. Finally, we confirmed our results using bone marrow-derived macrophage from IL-10â/â mice demonstrating that IL-10 deficiency partially prevented foamy phenotype induction after Mtb lipids exposure. In conclusion, our results evidence a role of IL-10 in promoting the differentiation of FM in the context of Mtb infection, contributing to our understanding of how alterations of the host metabolic factors may favor pathogen persistence