1,812 research outputs found

    A high-pressure hydrogen time projection chamber for the MuCap experiment

    Full text link
    The MuCap experiment at the Paul Scherrer Institute performed a high-precision measurement of the rate of the basic electroweak process of nuclear muon capture by the proton, μ−+p→n+νμ\mu^- + p \rightarrow n + \nu_\mu. The experimental approach was based on the use of a time projection chamber (TPC) that operated in pure hydrogen gas at a pressure of 10 bar and functioned as an active muon stopping target. The TPC detected the tracks of individual muon arrivals in three dimensions, while the trajectories of outgoing decay (Michel) electrons were measured by two surrounding wire chambers and a plastic scintillation hodoscope. The muon and electron detectors together enabled a precise measurement of the μp\mu p atom's lifetime, from which the nuclear muon capture rate was deduced. The TPC was also used to monitor the purity of the hydrogen gas by detecting the nuclear recoils that follow muon capture by elemental impurities. This paper describes the TPC design and performance in detail.Comment: 15 pages, 13 figures, to be submitted to Eur. Phys. J. A; clarified section 3.1.2 and made minor stylistic corrections for Eur. Phys. J. A requirement

    Measurement of Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling g_P

    Full text link
    The MuCap experiment at the Paul Scherrer Institute has measured the rate L_S of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultra-pure hydrogen gas. Cylindrical wire chambers and a segmented scintillator barrel detected electrons from muon decay. L_S is determined from the difference between the mu- disappearance rate in hydrogen and the free muon decay rate. The result is based on the analysis of 1.2 10^10 mu- decays, from which we extract the capture rate L_S = (714.9 +- 5.4(stat) +- 5.1(syst)) s^-1 and derive the proton's pseudoscalar coupling g_P(q^2_0 = -0.88 m^2_mu) = 8.06 +- 0.55.Comment: Updated figure 1 and small changes in wording to match published versio

    Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling gPg_P

    Full text link
    The rate of nuclear muon capture by the proton has been measured using a new experimental technique based on a time projection chamber operating in ultra-clean, deuterium-depleted hydrogen gas at 1 MPa pressure. The capture rate was obtained from the difference between the measured μ−\mu^- disappearance rate in hydrogen and the world average for the μ+\mu^+ decay rate. The target's low gas density of 1% compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate from the hyperfine singlet ground state of the μp\mu p atom is measured to be ΛS=725.0±17.4s−1\Lambda_S=725.0 \pm 17.4 s^{-1}, from which the induced pseudoscalar coupling of the nucleon, gP(q2=−0.88mμ2)=7.3±1.1g_P(q^2=-0.88 m_\mu^2)=7.3 \pm 1.1, is extracted. This result is consistent with theoretical predictions for gPg_P that are based on the approximate chiral symmetry of QCD.Comment: submitted to Phys.Rev.Let

    Performance of the Muon Identification at LHCb

    Full text link
    The performance of the muon identification in LHCb is extracted from data using muons and hadrons produced in J/\psi->\mu\mu, \Lambda->p\pi and D^{\star}->\pi D0(K\pi) decays. The muon identification procedure is based on the pattern of hits in the muon chambers. A momentum dependent binary requirement is used to reduce the probability of hadrons to be misidentified as muons to the level of 1%, keeping the muon efficiency in the range of 95-98%. As further refinement, a likelihood is built for the muon and non-muon hypotheses. Adding a requirement on this likelihood that provides a total muon efficiency at the level of 93%, the hadron misidentification rates are below 0.6%.Comment: 17 pages, 10 figure

    Study of aging properties of a wire chamber operating with high-pressure hydrogen

    Get PDF
    The project for a precision measurement of the µp-capture rate (µCAP experiment) is based on an application of a multi-wire proportional chamber (MWPC) operating in ultra-pure hydrogen at 10 bar pressure. A special test setup was constructed at PNPI to investigate the MWPC performance under the expected experimental conditions. The aging studies of the MWPCs were performed with intense irradiation from an alpha-source (Am 241 ) and a beta-source (Sr 90 ). After 45 days of continuous irradiation by alpha-particles no changes in the currents, in the signal shapes, and in the counting rates were observed. It was demonstrated that the MWPCs can operate without degradation at least up to accumulated charges of 0.1 C/cm wire. These irradiation conditions are much more severe than in the real experiment. During the study of the MWPC we have observed an appearance of short duration signals with amplitudes an order of magnitude larger than those of normal signals from the alpha-particles. The number of such signals ("streamers") strongly depend on HV. We shall continue these tests in the future with the goal of obtaining more detailed information about aging properties of MWPCs operating with high-pressure hydrogen

    Study of aging properties of a wire chamber operating with high-pressure hydrogen

    Get PDF
    Abstract The project for a precision measurement of the mp-capture rate (mCAP experiment) is based on an application of a multi-wire proportional chamber (MWPC) operating in ultra-pure hydrogen at 10 bar pressure. A special test setup was constructed at PNPI to investigate the MWPC performance under the expected experimental conditions. The aging studies of the MWPCs were performed with intense irradiation from an a-source ð 241 AmÞ and a b-source ð 90 SrÞ: After 45 days of continuous irradiation by a-particles no changes in the currents, in the signal shapes, and in the counting rates were observed. It was demonstrated that the MWPCs can operate without degradation at least up to accumulated charges of 0:1 C=cm wire. These irradiation conditions are much more severe than in the real experiment. During the study of the MWPC we have observed an appearance of short duration signals with amplitudes an order of magnitude larger than those of normal signals from the a-particles. The number of such signals (''streamers'') strongly depend on HV. We shall continue these tests in the future with the goal of obtaining more detailed information about aging properties of MWPCs operating with high-pressure hydrogen.
    • …
    corecore