131 research outputs found

    Selected reactive oxygen species and antioxidant enzymes in common bean after Pseudomonas syringae pv. phaseolicola and Botrytis cinerea infection

    Get PDF
    Phaseolus vulgaris cv. Korona plants were inoculated with the bacteria Pseudomonas syringae pv. phaseolicola (Psp), necrotrophic fungus Botrytis cinerea (Bc) or with both pathogens sequentially. The aim of the experiment was to determine how plants cope with multiple infection with pathogens having different attack strategy. Possible suppression of the non-specific infection with the necrotrophic fungus Bc by earlier Psp inoculation was examined. Concentration of reactive oxygen species (ROS), such as superoxide anion (O2 -) and H2O2 and activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were determined 6, 12, 24 and 48 h after inoculation. The measurements were done for ROS cytosolic fraction and enzymatic cytosolic or apoplastic fraction. Infection with Psp caused significant increase in ROS levels since the beginning of experiment. Activity of the apoplastic enzymes also increased remarkably at the beginning of experiment in contrast to the cytosolic ones. Cytosolic SOD and guaiacol peroxidase (GPOD) activities achieved the maximum values 48 h after treatment. Additional forms of the examined enzymes after specific Psp infection were identified; however, they were not present after single Bc inoculation. Subsequent Bc infection resulted only in changes of H2O2 and SOD that occurred to be especially important during plant–pathogen interaction. Cultivar Korona of common bean is considered to be resistant to Psp and mobilises its system upon infection with these bacteria. We put forward a hypothesis that the extent of defence reaction was so great that subsequent infection did not trigger significant additional response

    Effect of the distal histidine on the peroxidatic activity of monomeric cytoglobin

    Get PDF
    The reaction of hydrogen peroxide with ferric human cytoglobin and a number of distal histidine variants were studied. The peroxidase activity of the monomeric wildtype protein with an internal disulfide bond, likely to be the form of the protein in vivo, exhibits a high peroxidase-like activity above that of other globins such as myoglobin. Furthermore, the peroxidatic activity of wildtype cytoglobin shows increased resistance to radical-based degradation compared to myoglobin. The ferryl form of wildtype cytoglobin is unstable, but is able to readily oxidize substrates such as guaiacol. In contrast distal histidine mutants of cytoglobin (H81Y and H81V) show very low peroxidase activity but enhanced radical-induced degradation. Therefore, the weakly bound distal histidine appears to modulate ferryl stability and limit haem degradation. These data are consistent with a role of a peroxidase activity of cytoglobin in cell stress response mechanisms.</ns4:p

    The determination of carbon monoxide in blood treated with formaldehyde

    No full text

    Fatal nicotine poisoning

    No full text
    corecore