5 research outputs found

    Spectroscopic wear detector

    Get PDF
    The elemental composition of a material exposed to hot gases and subjected to wear is determined. Atoms of an elemental species not appearing in this material are implanted in a surface at a depth based on the maximum allowable wear. The exhaust gases are spectroscopically monitored to determine the exposure of these atoms when the maximum allowable wear is reached

    A fiber optic sensor for noncontact measurement of shaft speed, torque, and power

    Get PDF
    A fiber optic sensor which enables noncontact measurement of the speed, torque and power of a rotating shaft was fabricated and tested. The sensor provides a direct measurement of shaft rotational speed and shaft angular twist, from which torque and power can be determined. Angles of twist between 0.005 and 10 degrees were measured. Sensor resolution is limited by the sampling rate of the analog to digital converter, while accuracy is dependent on the spot size of the focused beam on the shaft. Increasing the sampling rate improves measurement resolution, and decreasing the focused spot size increases accuracy. Digital processing allows for enhancement of an electronically or optically degraded signal

    Digital filtering of plume emission spectra

    Get PDF
    Fourier transformation and digital filtering techniques were used to separate the superpositioned spectral phenomena observed in the exhaust plumes of liquid propellant rocket engines. Space shuttle main engine (SSME) spectral data were used to show that extraction of spectral lines in the spatial frequency domain does not introduce error, and extraction of the background continuum introduces only minimal error. Error introduced during band extraction could not be quantified due to poor spectrometer resolution. Based on the atomic and molecular species found in the SSME plume, it was determined that spectrometer resolution must be 0.03 nm for SSME plume spectral monitoring

    Determination of alloy content from plume spectral measurements

    Get PDF
    The mathematical derivation for a method to determine the identities and amounts of alloys present in a flame where numerous alloys may be present is described. This method is applicable if the total number of elemental species from all alloys that may be in the flame is greater than or equal to the total number of alloys. Arranging the atomic spectral line emission equations for the elemental species as a series of simultaneous equations enables solution for identity and amount of the alloy present in the flame. This technique is intended for identification and quantification of alloy content in the plume of a rocket engine. Spectroscopic measurements reveal the atomic species entrained in the plume. Identification of eroding alloys may lead to the identification of the eroding component

    Vibrational testing of optical fiber connector joints

    Get PDF
    An experimental study was performed to determine the effects of vibration on the propagation of light through SMA- and ST-type fiber-optic connectors. A multimode, fiber-optic link was vibrated from 0 to 10,000 Hz at a constant peak acceleration along the connector transverse and longitudinal axes. All other environmental parameters were ambient. Transfer characteristics through the connection were examined as a function of vibrational frequency using both laser and light-emitting diode (LED) light to illuminate the system. Slight differences in operation between the SMA and ST connectors were observed with no appreciative attenuation as a result of vibration. Vibration did cause the constant-amplitude input light to be modulated in the connector; however, the amplitude of vibration-induced noise was less than 3 standard deviations from the mean
    corecore