5 research outputs found

    A field tool for prediction of body fat in Sri Lankan women: skinfold thickness equation

    Get PDF
    Background: Valid skinfold thickness (SFT) equations for the prediction of body fat are currently unavailable for South Asian women and would be a potentially robust field tool. Our aim was to assess the validity of existing SFT equations against deuterium (2H2O) dilution and, if invalid, to develop and validate an SFT equation for % fat mass (%FM) in Sri Lankan women. Methods: H2O dilution was used with Fourier transform infrared (FTIR) spectroscopy as the criterion method for the assessment of %FM in urban Sri Lankan women (30\u201345 years). This data was used to assess the validity of available SFT equations and to generate and validate a new SFT equation for the prediction of %FM against the criterion method. Women (n = 164) were divided into validation and cross-validation groups for the development and validation of the new equation. The level of agreement between the %FM calculated by the final derived prediction equation and the %FM obtained by 2H2O dilution was assessed using Pearson\u2019s correlation coefficient (R) and Bland Altman plots. Student\u2019s t test was used to assess over- or underestimation, and significance was set at p < 0.05. Results: Existing equations significantly (p < 0.001) underestimated %FM compared with the 2H2O dilution method. The final equation obtained was %FM= 19.621 + (0.237*weight) + (0.259*triceps). When compared with 2H2O dilution, %FM by the equation was not significantly different. There was a significant (p < 0.001) correlation between %FM by the reference method and %FM by the equation. The limit of agreement by Bland Altman plot was narrow with a small mean positive bias. Conclusions: Existing SFT equations were not applicable to this population. The new equation derived was valid. We report a new SFT equation to predict %FM in women of South Asian ancestry suitable for field use

    Development of a New Equation for the Prediction of Resting Metabolic Rate in Sri Lankan Adults

    No full text
    Resting metabolic rate (RMR) is the key determinant of the energy requirement of an individual. Measurement of RMR by indirect calorimetry is not feasible in field settings and therefore equation-based calculations are used. Since a valid equation is not available for Sri Lankans, it is important to develop a new population-specific equation for field use. The study objective was to develop a new equation for the prediction of RMR in healthy Sri Lankans using a reference method, indirect calorimetry. RMR data were collected from fifty-seven (male 27) adults aged 19 to 60 years. They were randomly assigned to validation (n = 28) and cross-validation (n = 19) groups using the statistical package R (version 3.6.3). Height, weight, and RMR were measured. Multivariable fractional polynomials (MFP) were used to determine explanatory variables and their functional forms for the model. A variable shrinkage method was used to find the best fit predictor coefficients of the equation. The developed equation was cross-validated on an independent group. Weight and sex code (male = 1; female = 0) were identified as reliable independent variables. The new equation developed was RMR (kcal/day) = 284.5 + (13.2 x weight) + (133.0 x sex code). Independent variables of the prediction equation were able to predict 88.5% of the variance. Root mean square error (RMSE) of the prediction equation in validation and cross-validation was 88.11 kcal/day and 79.03 kcal/day, respectively. The equation developed in this study is suitable for predicting RMR in Sri Lankan adults
    corecore