5,129 research outputs found

    The Strange Star Surface: A Crust with Nuggets

    Full text link
    We reexamine the surface composition of strange stars. Strange quark stars are hypothetical compact stars which could exist if strange quark matter was absolutely stable. It is widely accepted that they are characterized by an enormous density gradient ( 1026~10^{26} g/cm4^4) and large electric fields at surface. By investigating the possibility of realizing a heterogeneous crust, comprised of nuggets of strange quark matter embedded in an uniform electron background, we find that the strange star surface has a much reduced density gradient and negligible electric field. We comment on how our findings will impact various proposed observable signatures for strange stars.Comment: 4 pages, 2 figure

    Electronic structure of the ferromagnetic superconductor UCoGe from first principles

    Full text link
    The superconductor UCoGe is analyzed with electronic structure calculations using Linearized Augmented Plane Wave method based on Density Functional Theory. Ferromagnetic and antiferromagnetic calculations with and without correlations (via LDA+U) were done. In this compound the Fermi level is situated in a region where the main contribution to DOS comes from the U-5f orbital. The magnetic moment is mainly due to the Co-3d orbital with a small contribution from the U-5f orbital. The possibility of fully non-collinear magnetism in this compound seems to be ruled out. These results are compared with the isostructural compound URhGe, in this case the magnetism comes mostly from the U-5f orbital

    Thermodynamics, strange quark matter, and strange stars

    Get PDF
    Because of the mass density-dependence, an extra term should be added to the expression of pressure. However, it should not appear in that of energy according to both the general ensemble theory and basic thermodynamic principle. We give a detail derivation of the thermodynamics with density-dependent particle masses. With our recently determined quark mass scaling, we study strange quark matter in this new thermodynamic treatment, which still indicates a possible absolute stability as previously found. However, the density behavior of the sound velocity is opposite to the previous finding, but consistent with one of our recent publication. We have also studied the structure of strange stars using the obtained equation of state.Comment: 6 pages, 6 PS figures, REVTeX styl

    Chiral phase properties of finite size quark droplets in the Nambu--Jona-Lasinio model

    Get PDF
    Chiral phase properties of finite size hadronic systems are investigated within the Nambu--Jona-Lasinio model. Finite size effects are taken into account by making use of the multiple reflection expansion. We find that, for droplets with relatively small baryon numbers, chiral symmetry restoration is enhanced by the finite size effects. However the radius of the stable droplet does not change much, as compared to that without the multiple reflection expansion.Comment: RevTex4, 9 pages, 6 figures, to be published in Phys. Rev.

    Strangelet spectra from type II supernovae

    Get PDF
    We study in this work the fate of strangelets injected as a contamination in the tail of a "strange matter-driven" supernova shock. A simple model for the fragmentation and braking of the strangelets when they pass through the expanding oxygen shell is presented and solved to understand the reprocessing of this component. We find that the escaping spectrum is a scaled-down version of the one injected at the base of the oxygen shell. The supernova source is likely to produce low-energy particles of A1001000A \sim 100-1000 quite independently of the initial conditions. However, it is difficult that ultrarrelativistic strangelets (such as the hypothetical Centauro primaries) can have an origin in those explosive events.Comment: RevTex file, 5 pp., no figure

    HI aperture synthesis and optical observations of the pair of galaxies NGC 6907 and 6908

    Full text link
    NGC 6908, a S0 galaxy situated in direction of NGC 6907, was only recently recognized as a distinct galaxy, instead of only a part of NGC 6907. We present 21 cm radio synthesis observations obtained with the GMRT and optical images and spectroscopy obtained with the Gemini North telescope of this pair of interacting galaxies. From the radio observations we obtained the velocity field and the HI column density map of the whole region containing the NGC 6907/8 pair, and by means of the Gemini multi-object spectroscopy we obtained high quality photometric images and 5A˚5 {\AA} resolution spectra sampling the two galaxies. By comparing the rotation curve of NGC 6907 obtained from the two opposite sides around the main kinematic axis, we were able to distinguish the normal rotational velocity field from the velocity components produced by the interaction between the two galaxies. Taking into account the rotational velocity of NGC 6907 and the velocity derived from the absorption lines for NGC 6908, we verified that the relative velocity between these systems is lower than 60 km s1^{-1}. The emission lines observed in the direction of NGC 6908, not typical of S0 galaxies, have the same velocity expected for the NGC 6907 rotation curve. Some of them, superimposed on the absorption profiles, which reinforces the idea that they were not formed in NGC 6908. Finally, the HI profile exhibits details of the interaction, showing three components: one for NGC 6908, another for the excited gas in the NGC 6907 disk and a last one for the gas with higher relative velocities left behind NGC 6908 by dynamical friction, used to estimate the time when the interaction started in (3.4±0.6)×107(3.4 \pm 0.6)\times10^7 years ago.Comment: 11 pages, 5 tables, 13 figures. Corrected typos. Accepted for publication in MNRAS. The definitive version will be available at http://www.blackwell-synergy.co

    Electronic structure, magnetism, and disorder in the Heusler compound Co2_2TiSn

    Full text link
    Polycrystalline samples of the half-metallic ferromagnet Heusler compound Co2_2TiSn have been prepared and studied using bulk techniques (X-ray diffraction and magnetization) as well as local probes (119^{119}Sn M\"ossbauer spectroscopy and 59^{59}Co nuclear magnetic resonance spectroscopy) in order to determine how disorder affects half-metallic behavior and also, to establish the joint use of M\"ossbauer and NMR spectroscopies as a quantitative probe of local ion ordering in these compounds. Additionally, density functional electronic structure calculations on ordered and partially disordered Co2_2TiSn compounds have been carried out at a number of different levels of theory in order to simultaneously understand how the particular choice of DFT scheme as well as disorder affect the computed magnetization. Our studies suggest that a sample which seems well-ordered by X-ray diffraction and magnetization measurements can possess up to 10% of antisite (Co/Ti) disordering. Computations similarly suggest that even 12.5% antisite Co/Ti disorder does not destroy the half-metallic character of this material. However, the use of an appropriate level of non-local DFT is crucial.Comment: 11 pages and 5 figure

    Physics and Astrophysics of Strange Quark Matter

    Get PDF
    3-flavor quark matter (strange quark matter; SQM) can be stable or metastable for a wide range of strong interaction parameters. If so, SQM can play an important role in cosmology, neutron stars, cosmic ray physics, and relativistic heavy-ion collisions. As an example of the intimate connections between astrophysics and heavy-ion collision physics, this Chapter gives an overview of the physical properties of SQM in bulk and of small-baryon number strangelets; discusses the possible formation, destruction, and implications of lumps of SQM (quark nuggets) in the early Universe; and describes the structure and signature of strange stars, as well as formation and detection of strangelets in cosmic rays. It is concluded, that astrophysical and laboratory searches are complementary in many respects, and that both should be pursued to test the intriguing possibility of a strange ground state for hadronic matter, and (more generally) to improve our knowledge of the strong interactions.Comment: 45 pages incl. figures. To appear in "Hadrons in Dense Matter and Hadrosynthesis", Lecture Notes in Physics, Springer Verlag (ed. J.Cleymans
    corecore