7,531 research outputs found

    Magnetoresistence engineering and singlet/triplet switching in InAs nanowire quantum dots with ferromagnetic sidegates

    Get PDF
    We present magnetoresistance (MR) experiments on an InAs nanowire quantum dot device with two ferromagnetic sidegates (FSGs) in a split-gate geometry. The wire segment can be electrically tuned to a single dot or to a double dot regime using the FSGs and a backgate. In both regimes we find a strong MR and a sharp MR switching of up to 25\% at the field at which the magnetizations of the FSGs are inverted by the external field. The sign and amplitude of the MR and the MR switching can both be tuned electrically by the FSGs. In a double dot regime close to pinch-off we find {\it two} sharp transitions in the conductance, reminiscent of tunneling MR (TMR) between two ferromagnetic contacts, with one transition near zero and one at the FSG switching fields. These surprisingly rich characteristics we explain in several simple resonant tunneling models. For example, the TMR-like MR can be understood as a stray-field controlled transition between singlet and a triplet double dot states. Such local magnetic fields are the key elements in various proposals to engineer novel states of matter and may be used for testing electron spin-based Bell inequalities.Comment: 7 pages, 6 figure

    Zero-Point cooling and low heating of trapped 111Cd+ ions

    Full text link
    We report on ground state laser cooling of single 111Cd+ ions confined in radio-frequency (Paul) traps. Heating rates of trapped ion motion are measured for two different trapping geometries and electrode materials, where no effort was made to shield the electrodes from the atomic Cd source. The low measured heating rates suggest that trapped 111Cd+ ions may be well-suited for experiments involving quantum control of atomic motion, including applications in quantum information science.Comment: 4 pages, 6 figures, Submitted to PR

    Colour-singlet strangelets at finite temperature

    Full text link
    Considering massless uu and dd quarks, and massive (150 MeV) ss quarks in a bag with the bag pressure constant B1/4=145B^{1/4} = 145 MeV, a colour-singlet grand canonical partition function is constructed for temperatures T=130T = 1-30 MeV. Then the stability of finite size strangelets is studied minimizing the free energy as a function of the radius of the bag. The colour-singlet restriction has several profound effects when compared to colour unprojected case: (1) Now bulk energy per baryon is increased by about 250250 MeV making the strange quark matter unbound. (2) The shell structures are more pronounced (deeper). (3) Positions of the shell closure are shifted to lower AA-values, the first deepest one occuring at A=2A=2, famous HH-particle ! (4) The shell structure at A=2A=2 vanishes only at T30T\sim 30 MeV, though for higher AA-values it happens so at T20T\sim 20 MeV.Comment: Revtex file(8 pages)+6 figures(ps files) available on request from first Autho

    Charge and critical density of strange quark matter

    Full text link
    The electric charge of strange quark matter is of vital importance to experiments. A recent investigation shows that strangelets are most likely highly negatively charged, rather than slightly positively charged as previously believed. Our present study indicates that negative charges can indeed lower the critical density, and thus be favorable to the experimental searches in heavy ion collisions. However, too much negative charges can make it impossible to maintain flavor equilibrium.Comment: 4 pages, LATeX with REVTeX style, one PS figure. To be published in Phys. Rev. C 59(6), 199

    Production of Strange Clusters and Strange Matter in Nucleus-Nucleus Collisions at the AGS

    Get PDF
    Production probabilities for strange clusters and strange matter in Au+Au collisions at AGS energy are obtained in the thermal fireball model. The only parameters of the model, the baryon chemical potential and temperature, were determined from a description of the rather complete set of hadron yields from Si+nucleus collisions at the AGS. For the production of light nuclear fragments and strange clusters the results are similar to recent coalescence model calculations. Strange matter production with baryon number larger than 10 is predicted to be much smaller than any current experimental sensitivities.Comment: 9 Pages (no figures

    How to identify a Strange Star

    Get PDF
    Contrary to young neutron stars, young strange stars are not subject to the r-mode instability which slows rapidly rotating, hot neutron stars to rotation periods near 10 ms via gravitational wave emission. Young millisecond pulsars are therefore likely to be strange stars rather than neutron stars, or at least to contain significant quantities of quark matter in the interior.Comment: 4 pages, 1 figur
    corecore