464 research outputs found
The ability of Salmonella to drill holes in the aorta.
A 56-year-old male with fever and enlarged mediastinum
underwent examinations for lymphoma. He had back pain
and hypotension. Computed tomography showed a false
aneurysm of the aortic arch (Fig. 1a). Pathological aorta
was excised. Reconstruction of the large hole on the aortic
arch (Fig. 1b) with oval patch tailored from cryopreserved
thoracic aorta was performed under hypothermic circulatory
arrest. Blood and aortic cultures grew Salmonella. The
patient had uneventful recovery. One year later is free
from infection
ASIME 2018 White Paper. In-Space Utilisation of Asteroids: Asteroid Composition -- Answers to Questions from the Asteroid Miners
In keeping with the Luxembourg government's initiative to support the future
use of space resources, ASIME 2018 was held in Belval, Luxembourg on April
16-17, 2018.
The goal of ASIME 2018: Asteroid Intersections with Mine Engineering, was to
focus on asteroid composition for advancing the asteroid in-space resource
utilisation domain. What do we know about asteroid composition from
remote-sensing observations? What are the potential caveats in the
interpretation of Earth-based spectral observations? What are the next steps to
improve our knowledge on asteroid composition by means of ground-based and
space-based observations and asteroid rendez-vous and sample return missions?
How can asteroid mining companies use this knowledge?
ASIME 2018 was a two-day workshop of almost 70 scientists and engineers in
the context of the engineering needs of space missions with in-space asteroid
utilisation. The 21 Questions from the asteroid mining companies were sorted
into the four asteroid science themes: 1) Potential Targets, 2)
Asteroid-Meteorite Links, 3) In-Situ Measurements and 4) Laboratory
Measurements. The Answers to those Questions were provided by the scientists
with their conference presentations and collected by A. Graps or edited
directly into an open-access collaborative Google document or inserted by A.
Graps using additional reference materials. During the ASIME 2018, first day
and second day Wrap-Ups, the answers to the questions were discussed further.
New readers to the asteroid mining topic may find the Conversation boxes and
the Mission Design discussions especially interesting.Comment: Outcome from the ASIME 2018: Asteroid Intersections with Mine
Engineering, Luxembourg. April 16-17, 2018. 65 Pages. arXiv admin note:
substantial text overlap with arXiv:1612.0070
Homochirality and the need of energy
The mechanisms for explaining how a stable asymmetric chemical system can be
formed from a symmetric chemical system, in the absence of any asymmetric
influence other than statistical fluctuations, have been developed during the
last decades, focusing on the non-linear kinetic aspects. Besides the absolute
necessity of self-amplification processes, the importance of energetic aspects
is often underestimated. Going down to the most fundamental aspects, the
distinction between a single object -- that can be intrinsically asymmetric --
and a collection of objects -- whose racemic state is the more stable one --
must be emphasized. A system of strongly interacting objects can be described
as one single object retaining its individuality and a single asymmetry; weakly
or non-interacting objects keep their own individuality, and are prone to
racemize towards the equilibrium state. In the presence of energy fluxes,
systems can be maintained in an asymmetric non-equilibrium steady-state. Such
dynamical systems can retain their asymmetry for times longer than their
racemization time.Comment: 8 pages, 7 figures, submitted to Origins of Life and Evolution of
Biosphere
Lewis X antigen mediates adhesion of human breast carcinoma cells to activated endothelium. Possible involvement of the endothelial scavenger receptor C-Type lectin
Lewis x (Lex, CD15), also known as SSEA-1 (stage specific embryonic antigen-1), is a trisaccharide with the structure Galβ(1–4)Fucα(1–3)GlcNAc, which is expressed on glycoconjugates in human polymorphonuclear granulocytes and various tumors such as colon and breast carcinoma. We have investigated the role of Lex in the adhesion of MCF-7 human breast cancer cells and PMN to human umbilical endothelial cells (HUVEC) and the effects of two different anti-Lex mAbs (FC-2.15 and MCS-1) on this adhesion. We also analyzed the cytolysis of Lex+-cells induced by anti-Lex mAbs and complement when cells were adhered to the endothelium, and the effect of these antibodies on HUVEC. The results indicate that MCF-7 cells can bind to HUVEC, and that MCS-1 but not FC-2.15 mAb inhibit this interaction. Both mAbs can efficiently lyse MCF-7 cells bound to HUVEC in the presence of complement without damaging endothelial cells. We also found a Lex-dependent PMN interaction with HUVEC. Although both anti-Lex mAbs lysed PMN in suspension and adhered to HUVEC, PMN aggregation was only induced by mAb FC-2.15. Blotting studies revealed that the endothelial scavenger receptor C-type lectin (SRCL), which binds Lex-trisaccharide, interacts with specific glycoproteins of Mr␣∼␣28 kD and 10 kD from MCF-7 cells. The interaction between Lex+-cancer cells and vascular endothelium is a potential target for cancer treatment.Fil: Elola, Maria Teresa. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Capurro, Mariana Isabel. University of Toronto; CanadáFil: Barrio, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; ArgentinaFil: Coombs, Peter J.. Imperial College London; Reino UnidoFil: Taylor, Maureen E.. Imperial College London; Reino UnidoFil: Drickamer, Kurt. Imperial College London; Reino UnidoFil: Mordoh, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; Argentin
A pilot study combining individual-based smoking cessation counseling, pharmacotherapy, and dental hygiene intervention
BACKGROUND: Dentists are in a unique position to advise smokers to quit by providing effective counseling on the various aspects of tobacco-induced diseases. The present study assessed the feasibility and acceptability of integrating dentists in a medical smoking cessation intervention.
METHODS: Smokers willing to quit underwent an 8-week smoking cessation intervention combining individual-based counseling and nicotine replacement therapy and/or bupropion, provided by a general internist. In addition, a dentist performed a dental exam, followed by an oral hygiene treatment and gave information about chronic effects of smoking on oral health. Outcomes were acceptability, global satisfaction of the dentist's intervention, and smoking abstinence at 6-month.
RESULTS: 39 adult smokers were included, and 27 (69%) completed the study. Global acceptability of the dental intervention was very high (94% yes, 6% mostly yes). Annoyances at the dental exam were described as acceptable by participants (61% yes, 23% mostly yes, 6%, mostly no, 10% no). Participants provided very positive qualitative comments about the dentist counseling, the oral exam, and the resulting motivational effect, emphasizing the feeling of oral cleanliness and health that encouraged smoking abstinence. At the end of the intervention (week 8), 17 (44%) participants reported smoking abstinence. After 6 months, 6 (15%, 95% CI 3.5 to 27.2) reported a confirmed continuous smoking abstinence.
DISCUSSION: We explored a new multi-disciplinary approach to smoking cessation, which included medical and dental interventions. Despite the small sample size and non-controlled study design, the observed rate was similar to that found in standard medical care. In terms of acceptability and feasibility, our results support further investigations in this field. TRIAL REGISTRATION NUMBER: ISRCTN67470159
Force and Compliance Measurements on Living Cells Using Atomic Force Microscopy (AFM)
We describe the use of atomic force microscopy (AFM) in studies of cell adhesion and cell compliance. Our studies use the interaction between leukocyte function associated antigen-1 (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) as a model system. The forces required to unbind a single LFA-1/ICAM-1 bond were measured at different loading rates. This data was used to determine the dynamic strength of the LFA-1/ICAM-1 complex and characterize the activation potential that this complex overcomes during its breakage. Force measurements acquired at the multiple- bond level provided insight about the mechanism of cell adhesion. In addition, the AFM was used as a microindenter to determine the mechanical properties of cells. The applications of these methods are described using data from a previous study
Human Cell Chips: Adapting DNA Microarray Spotting Technology to Cell-Based Imaging Assays
Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential applications of the cell chip by assaying HeLa and A549 samples for changes in target protein abundance (of the dsRNA-activated protein kinase PKR), subcellular localization (nuclear translocation of NFκB) and activation state (phosphorylation of STAT1 and of the p38 and JNK stress kinases) in response to treatment by several chemical effectors (anisomycin, TNFα, and interferon), and we demonstrate scalability by printing a chip with ∼4,700 discrete samples of HeLa cells. Coupling this technology to high-throughput methods for culturing and treating cell lines could enable researchers to examine the impact of exogenous effectors on the same population of experimentally treated cells across multiple reporter targets potentially representing a variety of molecular systems, thus producing a highly multiplexed dataset with minimized experimental variance and at reduced reagent cost compared to alternative techniques. The ability to prepare and store chips also allows researchers to follow up on observations gleaned from initial screens with maximal repeatability
Structure of the St. Louis encephalitis virus postfusion envelope trimer
St. Louis encephalitis virus (SLEV) is a mosquito-borne flavivirus responsible for several human encephalitis outbreaks over the last 80 years. Mature flavivirus virions are coated with dimeric envelope (E) proteins that mediate attachment and fusion with host cells. E is a class II fusion protein, the hallmark of which is a distinct dimer-to-trimer rearrangement that occurs upon endosomal acidification and insertion of hydrophobic fusion peptides into the endosomal membrane. Herein, we report the crystal structure of SLEV E in the posfusion trimer conformation. The structure revealed specific features that differentiate SLEV E from trimers of related flavi- and alphaviruses. SLEV E fusion loops have distinct intermediate spacing such that they are positioned further apart than previously observed in flaviviruses but closer together than Semliki Forest virus, an alphavirus. Domains II and III (DII and DIII) of SLEV E also adopt different angles relative to DI, which suggests that the DI-DII joint may accommodate spheroidal motions. However, trimer interfaces are well conserved among flaviviruses, so it is likely the differences observed represent structural features specific to SLEV function. Analysis of surface potentials revealed a basic platform underneath flavivirus fusion loops that may interact with the anionic lipid head groups found in membranes. Taken together, these results highlight variations in E structure and assembly that may direct virus-specific interactions with host determinants to influence pathogenesis
- …