297 research outputs found

    Pure Cerebellar Ataxia with Homozygous Mutations in the PNPLA6 Gene

    Get PDF
    Autosomal-recessive cerebellar ataxias (ARCA) are clinically and genetically heterogeneous conditions primarily affecting the cerebellum. Mutations in the PNPLA6 gene have been identified as the cause of hereditary spastic paraplegia and complex forms of ataxia associated with retinal and endocrine manifestations in a field where the genotype-phenotype correlations are rapidly expanding. We identified two cousins from a consanguineous family belonging to a large Zoroastrian (Parsi) family residing in Mumbai, India, who presented with pure cerebellar ataxia without chorioretinal dystrophy or hypogonadotropic hypogonadism. We used a combined approach of clinical characterisation, homozygosity mapping, whole-exome and Sanger sequencing to identify the genetic defect in this family. The phenotype in the family was pure cerebellar ataxia. Homozygosity mapping revealed one large region of shared homozygosity at chromosome 19p13 between affected individuals. Within this region, whole-exome sequencing of the index case identified two novel homozygous missense variants in the PNPLA6 gene at c.3847G>A (p.V1283M) and c.3929A>T (p.D1310V) in exon 32. Both segregated perfectly with the disease in this large family, with only the two affected cousins being homozygous. We identified for the first time PNPLA6 mutations associated with pure cerebellar ataxia in a large autosomal-recessive Parsi kindred. Previous mutations in this gene have been associated with a more complex phenotype but the results here suggest an extension of the associated disease spectrum

    Socializing accountability for improving primary healthcare: an action research program in rural Karnataka

    Get PDF
    The Alma Ata Declaration of 1978 invoked a socialising form of accountability through which communities and health workers participated in and were jointly accountable for primary healthcare. Aside from a few experiments, by the 1990s these ideals were quickly replaced by policy prescriptions based on increasing efficiency in data quality and reporting through the introduction of health information systems. More recently, there has been a revival of interest in community participation as a mechanism for improving the poor status of primary healthcare in developing countries through the constitution of village health committees. This paper documents and reflects on nine years of research on interventions aimed at improving primary healthcare accountability in rural Karnataka. Over this period, our focus has shifted from studying how computerised health information systems can strengthen conventional accountability systems to a period of extended participatory action research aimed at socialising accountability practices at village level. The findings from this study constitute vital knowledge for reforming the primary healthcare sector through different policy measures including the design of appropriate technology-based solutions

    Modelling the Dynamics of an Aedes albopictus Population

    Full text link
    We present a methodology for modelling population dynamics with formal means of computer science. This allows unambiguous description of systems and application of analysis tools such as simulators and model checkers. In particular, the dynamics of a population of Aedes albopictus (a species of mosquito) and its modelling with the Stochastic Calculus of Looping Sequences (Stochastic CLS) are considered. The use of Stochastic CLS to model population dynamics requires an extension which allows environmental events (such as changes in the temperature and rainfalls) to be taken into account. A simulator for the constructed model is developed via translation into the specification language Maude, and used to compare the dynamics obtained from the model with real data.Comment: In Proceedings AMCA-POP 2010, arXiv:1008.314

    Promoting Transparency in Social Science Research

    Get PDF
    There is growing appreciation for the advantages of experimentation in the social sciences. Policy-relevant claims that in the past were backed by theoretical arguments and inconclusive correlations are now being investigated using more credible methods. Changes have been particularly pronounced in development economics, where hundreds of randomized trials have been carried out over the last decade. When experimentation is difficult or impossible, researchers are using quasi-experimental designs. Governments and advocacy groups display a growing appetite for evidence-based policy-making. In 2005, Mexico established an independent government agency to rigorously evaluate social programs, and in 2012, the U.S. Office of Management and Budget advised federal agencies to present evidence from randomized program evaluations in budget requests (1, 2)

    Engaging Undergraduates to Solve Global Health Challenges: A New Approach Based on Bioengineering Design

    Get PDF
    Recent reports have highlighted the need for educational programs to prepare students for careers developing and disseminating new interventions that improve global public health. Because of its multi-disciplinary, design-centered nature, the field of Biomedical Engineering can play an important role in meeting this challenge. This article describes a new program at Rice University to give undergraduate students from all disciplines a broad background in bioengineering and global health and provides an initial assessment of program impact. Working in partnership with health care providers in developing countries, students in the Beyond Traditional Borders (BTB) initiative learn about health challenges of the poor and put this knowledge to work immediately, using the engineering design process as a framework to formulate solutions to complex global health challenges. Beginning with a freshman design project and continuing through a capstone senior design course, the BTB curriculum uses challenges provided by partners in the developing world to teach students to integrate perspectives from multiple disciplines, and to develop leadership, communication, and teamwork skills. Exceptional students implement their designs under the guidance of clinicians through summer international internships. Since 2006, 333 students have designed more than 40 technologies and educational programs; 28 have been implemented in sub-Saharan Africa, Latin America, the Caribbean, southeast Asia, and the United States. More than 18,000 people have benefited from these designs. 95% of alumni who completed an international internship reported that participation in the program changed or strengthened their career plans to include a focus on global health medicine, research, and/or policy. Empowering students to use bioengineering design to address real problems is an effective way to teach the new generation of leaders needed to solve global health challenges

    Onset and window of SARS-CoV-2 infectiousness and temporal correlation with symptom onset: a prospective, longitudinal, community cohort study.

    Get PDF
    BACKGROUND: Knowledge of the window of SARS-CoV-2 infectiousness is crucial in developing policies to curb transmission. Mathematical modelling based on scarce empirical evidence and key assumptions has driven isolation and testing policy, but real-world data are needed. We aimed to characterise infectiousness across the full course of infection in a real-world community setting. METHODS: The Assessment of Transmission and Contagiousness of COVID-19 in Contacts (ATACCC) study was a UK prospective, longitudinal, community cohort of contacts of newly diagnosed, PCR-confirmed SARS-CoV-2 index cases. Household and non-household exposed contacts aged 5 years or older were eligible for recruitment if they could provide informed consent and agree to self-swabbing of the upper respiratory tract. The primary objective was to define the window of SARS-CoV-2 infectiousness and its temporal correlation with symptom onset. We quantified viral RNA load by RT-PCR and infectious viral shedding by enumerating cultivable virus daily across the course of infection. Participants completed a daily diary to track the emergence of symptoms. Outcomes were assessed with empirical data and a phenomenological Bayesian hierarchical model. FINDINGS: Between Sept 13, 2020, and March 31, 2021, we enrolled 393 contacts from 327 households (the SARS-CoV-2 pre-alpha and alpha variant waves); and between May 24, 2021, and Oct 28, 2021, we enrolled 345 contacts from 215 households (the delta variant wave). 173 of these 738 contacts were PCR positive for more than one timepoint, 57 of which were at the start of infection and comprised the final study population. The onset and end of infectious viral shedding were captured in 42 cases and the median duration of infectiousness was 5 (IQR 3-7) days. Although 24 (63%) of 38 cases had PCR-detectable virus before symptom onset, only seven (20%) of 35 shed infectious virus presymptomatically. Symptom onset was a median of 3 days before both peak viral RNA and peak infectious viral load (viral RNA IQR 3-5 days, n=38; plaque-forming units IQR 3-6 days, n=35). Notably, 22 (65%) of 34 cases and eight (24%) of 34 cases continued to shed infectious virus 5 days and 7 days post-symptom onset, respectively (survival probabilities 67% and 35%). Correlation of lateral flow device (LFD) results with infectious viral shedding was poor during the viral growth phase (sensitivity 67% [95% CI 59-75]), but high during the decline phase (92% [86-96]). Infectious virus kinetic modelling suggested that the initial rate of viral replication determines the course of infection and infectiousness. INTERPRETATION: Less than a quarter of COVID-19 cases shed infectious virus before symptom onset; under a crude 5-day self-isolation period from symptom onset, two-thirds of cases released into the community would still be infectious, but with reduced infectious viral shedding. Our findings support a role for LFDs to safely accelerate deisolation but not for early diagnosis, unless used daily. These high-resolution, community-based data provide evidence to inform infection control guidance. FUNDING: National Institute for Health and Care Research

    Risk factors and vectors for SARS-CoV-2 household transmission: a prospective, longitudinal cohort study

    Get PDF
    BACKGROUND: Despite circumstantial evidence for aerosol and fomite spread of SARS-CoV-2, empirical data linking either pathway with transmission are scarce. Here we aimed to assess whether the presence of SARS-CoV-2 on frequently-touched surfaces and residents' hands was a predictor of SARS-CoV-2 household transmission. METHODS: In this longitudinal cohort study, during the pre-alpha (September to December, 2020) and alpha (B.1.1.7; December, 2020, to April, 2021) SARS-CoV-2 variant waves, we prospectively recruited contacts from households exposed to newly diagnosed COVID-19 primary cases, in London, UK. To maximally capture transmission events, contacts were recruited regardless of symptom status and serially tested for SARS-CoV-2 infection by RT-PCR on upper respiratory tract (URT) samples and, in a subcohort, by serial serology. Contacts' hands, primary cases' hands, and frequently-touched surface-samples from communal areas were tested for SARS-CoV-2 RNA. SARS-CoV-2 URT isolates from 25 primary case-contact pairs underwent whole-genome sequencing (WGS). FINDINGS: From Aug 1, 2020, until March 31, 2021, 620 contacts of PCR-confirmed SARS-CoV-2-infected primary cases were recruited. 414 household contacts (from 279 households) with available serial URT PCR results were analysed in the full household contacts' cohort, and of those, 134 contacts with available longitudinal serology data and not vaccinated pre-enrolment were analysed in the serology subcohort. Household infection rate was 28·4% (95% CI 20·8-37·5) for pre-alpha-exposed contacts and 51·8% (42·5-61·0) for alpha-exposed contacts (p=0·0047). Primary cases' URT RNA viral load did not correlate with transmission, but was associated with detection of SARS-CoV-2 RNA on their hands (p=0·031). SARS-CoV-2 detected on primary cases' hands, in turn, predicted contacts' risk of infection (adjusted relative risk [aRR]=1·70 [95% CI 1·24-2·31]), as did SARS-CoV-2 RNA presence on household surfaces (aRR=1·66 [1·09-2·55]) and contacts' hands (aRR=2·06 [1·57-2·69]). In six contacts with an initial negative URT PCR result, hand-swab (n=3) and household surface-swab (n=3) PCR positivity preceded URT PCR positivity. WGS corroborated household transmission. INTERPRETATION: Presence of SARS-CoV-2 RNA on primary cases' and contacts' hands and on frequently-touched household surfaces associates with transmission, identifying these as potential vectors for spread in households. FUNDING: National Institute for Health Research Health Protection Research Unit in Respiratory Infections, Medical Research Council
    • 

    corecore