3 research outputs found
Cognitive Sub-Nyquist Hardware Prototype of a Collocated MIMO Radar
We present the design and hardware implementation of a radar prototype that
demonstrates the principle of a sub-Nyquist collocated multiple-input
multiple-output (MIMO) radar. The setup allows sampling in both spatial and
spectral domains at rates much lower than dictated by the Nyquist sampling
theorem. Our prototype realizes an X-band MIMO radar that can be configured to
have a maximum of 8 transmit and 10 receive antenna elements. We use frequency
division multiplexing (FDM) to achieve the orthogonality of MIMO waveforms and
apply the Xampling framework for signal recovery. The prototype also implements
a cognitive transmission scheme where each transmit waveform is restricted to
those pre-determined subbands of the full signal bandwidth that the receiver
samples and processes. Real-time experiments show reasonable recovery
performance while operating as a 4x5 thinned random array wherein the combined
spatial and spectral sampling factor reduction is 87.5% of that of a filled
8x10 array.Comment: 5 pages, Compressed Sensing Theory and its Applications to Radar,
Sonar and Remote Sensing (CoSeRa) 201
A single pseudouridine on rRNA regulates ribosome structure and function in the mammalian parasite Trypanosoma brucei
Abstract Trypanosomes are protozoan parasites that cycle between insect and mammalian hosts and are the causative agent of sleeping sickness. Here, we describe the changes of pseudouridine (Ψ) modification on rRNA in the two life stages of the parasite using four different genome-wide approaches. CRISPR-Cas9 knock-outs of all four snoRNAs guiding Ψ on helix 69 (H69) of the large rRNA subunit were lethal. A single knock-out of a snoRNA guiding Ψ530 on H69 altered the composition of the 80S monosome. These changes specifically affected the translation of only a subset of proteins. This study correlates a single site Ψ modification with changes in ribosomal protein stoichiometry, supported by a high-resolution cryo-EM structure. We propose that alteration in rRNA modifications could generate ribosomes preferentially translating state-beneficial proteins
Structural and mechanistic insights into the function of Leishmania ribosome lacking a single pseudouridine modification
International audienceLeishmania is the causative agent of cutaneous and visceral diseases affecting millions of individuals worldwide. Pseudouridine (Ψ), the most abundant modification on rRNA, changes during the parasite life cycle. Alterations in the level of a specific Ψ in helix 69 (H69) affected ribosome function. To decipher the molecular mechanism of this phenotype, we determine the structure of ribosomes lacking the single Ψ and its parental strain at ∼2.4–3 Å resolution using cryo-EM. Our findings demonstrate the significance of a single Ψ on H69 to its structure and the importance for its interactions with helix 44 and specific tRNAs. Our study suggests that rRNA modification affects translation of mRNAs carrying codon bias due to selective accommodation of tRNAs by the ribosome. Based on the high-resolution structures, we propose a mechanism explaining how the ribosome selects specific tRNAs