8 research outputs found

    Hedgehog inhibition mediates radiation sensitivity in mouse xenograft models of human esophageal adenocarcinoma

    No full text
    <div><p>Background</p><p>The Hedgehog (Hh) signaling pathway is active in esophageal adenocarcinoma (EAC). We used a patient-derived murine xenograft (PDX) model of EAC to evaluate tumour response to conventional treatment with radiation/chemoradiation with or without Hh inhibition. Our goal was to determine the potential radioresistance effects of Hh signaling and radiosensitization by Hh inhibitors.</p><p>Methods</p><p>PDX models were treated with radiation, chemotherapy or combined chemoradiation. Tumour response was measured by growth delay. Hh transcript levels (qRT-PCR) were compared among frozen tumours from treated and control mice. 5E1, a monoclonal SHH antibody, or LDE225, a clinical SMO inhibitor (NovartisĀ®) inhibited Hh signaling.</p><p>Results</p><p>Precision irradiation significantly delayed xenograft tumour growth in all 7 PDX models. Combined chemoradiation further delayed growth relative to either modality alone in three of six PDX models. Following irradiation, two of three PDX models demonstrated sustained up-regulation of Hh transcripts. Combined LDE225 and radiation, and 5E1 alone delayed growth relative to either treatment alone in a Hh-responsive PDX model, but not in a non-responsive model.</p><p>Conclusion</p><p>Hh signaling mediates the radiation response in some EAC PDX models, and inhibition of this pathway may augment the efficacy of radiation in tumours that are Hh dependent.</p></div

    Xenograft experimental design.

    No full text
    <p>A radiation experiment is shown as an example. Similar protocols were used for chemoradiation and for hedgehog inhibitor experiments, albeit with larger numbers of mice and without RT-PCR. *Up to 90 mice were used for large hedgehog inhibitor experiments to ensure sufficient numbers remained at the conclusion of the experiment.</p

    Radiation up-regulates Hedgehog transcription in some EAC tumours relative to controls.

    No full text
    <p>Significant (p<0.05) fold changes are underlined. Fold changes that are both ā‰„1.5 and statistically significant are shaded in grey. A lemniscate indicates that transcripts were undetectable in controls but detectable in treated tumours (infinite fold change). N/A indicates undetectable transcripts in treated tumours. (A-C) Fold changes in transcript levels in models 8, 6 and 7.</p
    corecore