1,335 research outputs found

    Vortex formation in a stirred Bose-Einstein condensate

    Full text link
    Using a focused laser beam we stir a Bose-Einstein condensate of 87Rb confined in a magnetic trap and observe the formation of a vortex for a stirring frequency exceeding a critical value. At larger rotation frequencies we produce states of the condensate for which up to four vortices are simultaneously present. We have also measured the lifetime of the single vortex state after turning off the stirring laser beam.Comment: 4 pages, 3 figure

    An Atom Faucet

    Get PDF
    We have constructed and modeled a simple and efficient source of slow atoms. From a background vapour loaded magneto-optical trap, a thin laser beam extracts a continuous jet of cold rubidium atoms. In this setup, the extraction column that is typical to leaking MOT systems is created without any optical parts placed inside the vacuum chamber. For detailed analysis, we present a simple 3D numerical simulation of the atomic motion in the presence of multiple saturating laser fields combined with an inhomogeneous magnetic field. At a pressure of PRb87=1×108P_{\rm Rb87}=1 \times 10^{-8} mbar, the moderate laser power of 10 mW per beam generates a jet of flux Φ=1.3×108\Phi =1.3\times 10^8 atoms/s with a mean velocity of 14 m/s and a divergence of <20<20 mrad.Comment: Submitted to EPJD. 1 TeX file (EPJ format), 7 picture

    Bose-Einstein Condensates with Large Number of Vortices

    Full text link
    We show that as the number of vortices in a three dimensional Bose-Einstein Condensate increases, the system reaches a "quantum Hall" regime where the density profile is a Gaussian in the xy-plane and an inverted parabolic profile along z. The angular momentum of the system increases as the vortex lattice shrinks. However, Coriolis force prevents the unit cell of the vortex lattice from shrinking beyond a minimum size. Although the recent MIT experiment is not exactly in the quantum Hall regime, it is close enough for the present results to be used as a guide. The quantum Hall regime can be easily reached by moderate changes of the current experimental parameters.Comment: 4 pages, no figure

    Interferometric detection of a single vortex in a dilute Bose-Einstein condensate

    Full text link
    Using two radio frequency pulses separated in time we perform an amplitude division interference experiment on a rubidium Bose-Einstein condensate. The presence of a quantized vortex, which is nucleated by stirring the condensate with a laser beam, is revealed by a dislocation in the fringe pattern.Comment: 4 pages, 4 figure

    Dissipative dynamics of vortex arrays in trapped Bose-condensed gases: neutron stars physics on μ\muK scale

    Full text link
    We develop a theory of dissipative dynamics of large vortex arrays in trapped Bose-condensed gases. We show that in a static trap the interaction of the vortex array with thermal excitations leads to a non-exponential decay of the vortex structure, and the characteristic lifetime depends on the initial density of vortices. Drawing an analogy with physics of pulsar glitches, we propose an experiment which employs the heating of the thermal cloud in the course of the decay of the vortex array as a tool for a non-destructive study of the vortex dynamics.Comment: 4 pages, revtex; revised versio

    Nonlinear interference in a mean-field quantum model

    Full text link
    Using similar nonlinear stationary mean-field models for Bose-Einstein Condensation of cold atoms and interacting electrons in a Quantum Dot, we propose to describe the original many-particle ground state as a one-particle statistical mixed state of the nonlinear eigenstates whose weights are provided by the eigenstate non-orthogonality. We search for physical grounds in the interpretation of our two main results, namely, quantum-classical nonlinear transition and interference between nonlinear eigenstates.Comment: RevTeX (pdfLaTeX), 7 pages with 5 png-figures include

    Dynamic instability of a rotating Bose-Einstein condensate

    Full text link
    We consider a Bose-Einstein condensate subject to a rotating harmonic potential, in connection with recent experiments leading to the formation of vortices. We use the classical hydrodynamic approximation to the non-linear Schr\"odinger equation to determine almost analytically the evolution of the condensate. We predict that this evolution can exhibit dynamical instabilities, for the stirring procedure previously demonstrated at ENS and for a new stirring procedure that we put forward. These instabilities take place within the range of stirring frequency and amplitude for which vortices are produced experimentally. They provide therefore an initiating mechanism for vortex nucleation.Comment: 4 pages, 3 figures, last version including comparison with experiment

    Vortex lattices in a stirred Bose-Einstein condensate

    Full text link
    We stir with a focused laser beam a Bose-Einstein condensate of 87^{87}Rb atoms confined in a magnetic trap. We observe the formation of a single vortex for a stirring frequency exceeding a critical value. At larger rotation frequencies we produce states of the condensate for which up to eleven vortices are simultaneously present. We present measurements of the decay of a vortex array once the stirring laser beam is removed

    Vortex lattice formation in a rotating Bose-Einstein condensate

    Full text link
    We study the dynamics of vortex lattice formation of a rotating trapped Bose-Einstein condensate by numerically solving the two-dimensional Gross-Pitaevskii equation, and find that the condensate undergoes elliptic deformation, followed by unstable surface-mode excitations before forming a quantized vortex lattice. The origin of the peculiar surface-mode excitations is identified to be phase fluctuations at the low-density surface regime. The obtained dependence of a distortion parameter on time and that on the driving frequency agree with the recent experiments by Madison {\it et al.} [Phys. Rev. Lett. {\bf 86}, 4443 (2001)].Comment: 4 pages, 4 figure

    Kelvin Modes of a fast rotating Bose-Einstein Condensate

    Full text link
    Using the concept of diffused vorticity and the formalism of rotational hydrodynamics we calculate the eigenmodes of a harmonically trapped Bose-Einstein condensate containing an array of quantized vortices. We predict the occurrence of a new branch of anomalous excitations, analogous to the Kelvin modes of the single vortex dynamics. Special attention is devoted to the excitation of the anomalous scissors mode.Comment: 7 pages, 3 figures, submitted to Phys. Rev.
    corecore