95 research outputs found
Rapidly rotating Bose-Einstein condensates in an anharmonic confinement
We examine a rapidly rotating Bose-Einstein condensate in an anharmonic
confinement and find that many properties such as the critical rotating
frequency and phase diagram are quite different from those in a harmonic trap.
We investigate the phase transitions by means of average-vortex-approximation.
We find that the vortex lattice consists of a vortex array with a hole in the
center of the cloud as the rotating frequency increases and the vortex
becomes invisible when reaches some value.Comment: Revtex, 5 pages, 2 figure
Three-dimensional vortex configurations in a rotating Bose Einstein condensate
We consider a rotating Bose-Einstein condensate in a harmonic trap and
investigate numerically the behavior of the wave function which solves the
Gross Pitaevskii equation. Following recent experiments [Rosenbuch et al, Phys.
Rev. Lett., 89, 200403 (2002)], we study in detail the line of a single
quantized vortex, which has a U or S shape. We find that a single vortex can
lie only in the x-z or y-z plane. S type vortices exist for all values of the
angular velocity Omega while U vortices exist for Omega sufficiently large. We
compute the energy of the various configurations with several vortices and
study the three-dimensional structure of vortices
On the shape of vortices for a rotating Bose Einstein condensate
For a Bose-Einstein condensate placed in a rotating trap, we study the
simplified energy of a vortex line derived in Aftalion-Riviere Phys. Rev. A 64,
043611 (2001) in order to determine the shape of the vortex line according to
the rotational velocity and the elongation of the condensate. The energy
reflects the competition between the length of the vortex which needs to be
minimized taking into account the anisotropy of the trap and the rotation term
which pushes the vortex along the z axis. We prove that if the condensate has
the shape of a pancake, the vortex stays straight along the z axis while in the
case of a cigar, the vortex is bent
Multiply quantized vortices in trapped Bose-Einstein condensates
Vortex configurations in rotating Bose-Einstein condensed gases trapped in
power-law and anharmonic potentials are studied. When the confining potential
is steeper than harmonic in the plane perpendicular to the axis of rotation,
vortices with quantum numbers larger than one are energetically favorable if
the interaction is weak enough. Features of the wave function for small and
intermediate rotation frequencies are investigated numerically.Comment: 9 pages, 6 figures. Revised and extended article following referee
repor
Vortex Lattice Structures of a Bose-Einstein Condensate in a Rotating Lattice Potential
We study vortex lattice structures of a trapped Bose-Einstein condensate in a
rotating lattice potential by numerically solving the time-dependent
Gross-Pitaevskii equation. By rotating the lattice potential, we observe the
transition from the Abrikosov vortex lattice to the pinned lattice. We
investigate the transition of the vortex lattice structure by changing
conditions such as angular velocity, intensity, and lattice constant of the
rotating lattice potential.Comment: 6 pages, 8 figures, submitted to Quantum Fluids and Solids Conference
(QFS 2006
Interferometric detection of a single vortex in a dilute Bose-Einstein condensate
Using two radio frequency pulses separated in time we perform an amplitude
division interference experiment on a rubidium Bose-Einstein condensate. The
presence of a quantized vortex, which is nucleated by stirring the condensate
with a laser beam, is revealed by a dislocation in the fringe pattern.Comment: 4 pages, 4 figure
Dissipative dynamics of vortex arrays in anisotropic traps
We discuss the dissipative dynamics of vortex arrays in trapped
Bose-condensed gases and analyze the lifetime of the vortices as a function of
trap anisotropy and the temperature. In particular, we distinguish the two
regimes of the dissipative dynamics, depending on the relative strength of the
mutual friction between the vortices and the thermal component, and the
friction of the thermal particles on the trap anisotropy. We study the effects
of heating of the thermal cloud by the escaping vortices on the dynamics of the
system.Comment: RevTeX, 8 pages, 3 eps figure
Kelvin Modes of a fast rotating Bose-Einstein Condensate
Using the concept of diffused vorticity and the formalism of rotational
hydrodynamics we calculate the eigenmodes of a harmonically trapped
Bose-Einstein condensate containing an array of quantized vortices. We predict
the occurrence of a new branch of anomalous excitations, analogous to the
Kelvin modes of the single vortex dynamics. Special attention is devoted to the
excitation of the anomalous scissors mode.Comment: 7 pages, 3 figures, submitted to Phys. Rev.
Generation and evolution of vortex-antivortex pairs in Bose-Einstein condensates
We propose a method for generating and controlling a spatially separated
vortex--antivortex pair in a Bose-Einstein condensate trapped in a toroidal
potential. Our simulations of the time dependent Gross-Pitaevskii equation show
that in toroidal condensates vortex dynamics are different from the dynamics in
the homogeneous case. Our numerical results agree well with analytical
calculations using the image method. Our proposal offers an effective example
of coherent generation and control of vortex dynamics in atomic condensates.Comment: 4 pages, 2 figure
Nonlinear interference in a mean-field quantum model
Using similar nonlinear stationary mean-field models for Bose-Einstein
Condensation of cold atoms and interacting electrons in a Quantum Dot, we
propose to describe the original many-particle ground state as a one-particle
statistical mixed state of the nonlinear eigenstates whose weights are provided
by the eigenstate non-orthogonality. We search for physical grounds in the
interpretation of our two main results, namely, quantum-classical nonlinear
transition and interference between nonlinear eigenstates.Comment: RevTeX (pdfLaTeX), 7 pages with 5 png-figures include
- …