2 research outputs found

    Green Fabrication of ZnO Nanoparticles and ZnO/rGO Nanocomposites from Algerian Date Syrup Extract: Synthesis, Characterization, and Augmented Photocatalytic Efficiency in Methylene Blue Degradation

    No full text
    International audienceThis innovative article provides a detailed description of the successful biosynthesis of zinc nanoparticles (ZnO-NPs) using an aqueous extract of Algerian Date Syrup, also known as molasses. A meticulous process was carried out to determine the optimal calcination temperature for ZnO-NPs, a crucial step in the preparation of these nanoparticles. The study was further extended by creating ZnO/rGOx nanocomposites through a hydrothermal method, varying the concentrations of reduced graphene oxide (rGO) at 5%, 10%, and 15%. The characteristics of the nanocomposites were thoroughly explored, encompassing chemical, optical, and morphological aspects, using sophisticated analysis techniques such as scanning electron microscopy (SEM), UV-visible diffuse reflectance spectroscopy (UV DRS), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). These analyses provided an in-depth understanding of the structure and properties of the nanocomposites. The centerpiece of this study is the evaluation of the photocatalytic degradation capacity of ZnO-NPs and ZnO/rGOx nanocomposites. These materials have demonstrated their ability to act as cost-effective and environmentally friendly photocatalysts for wastewater treatment. Experiments on methylene blue degradation under UV irradiation were conducted, yielding impressive results: a degradation efficiency of 86.6% was achieved in 140 min using 1 g/L of ZnO-NPs, and this rate reached 100% with the ZnO/rGO catalyst in the same time frame, highlighting its superiority as a photocatalyst. Furthermore, this study examined the variables affecting the photocatalysis experiment, including the solution’s pH and the amount of catalyst. The results revealed that the ZnO/rGO photocatalyst reached its optimal efficiency under neutral pH conditions and at a concentration of 1 g/L, providing crucial information for practical use of these materials. This enriched article highlights the promising potential of ZnO-NPs and ZnO/rGOx nanocomposites as efficient photocatalysts for methylene blue degradation, paving the way for significant environmental applications in wastewater treatment

    Efficiency of Hydrogen Peroxide and Fenton Reagent for Polycyclic Aromatic Hydrocarbon Degradation in Contaminated Soil: Insights from Experimental and Predictive Modeling

    No full text
    International audienceThis study investigates the degradation kinetics of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil using hydrogen peroxide (H2O2) and the Fenton process (H2O2/Fe2+). The effect of oxidant concentration and the Fenton molar ratio on PAH decomposition efficiency is examined. Results reveal that increasing H2O2 concentration above 25 mmol/samples leads to a slight increase in the rate constants for both first- and second-order reactions. The Fenton process demonstrates higher efficiency in PAH degradation compared to H2O2 alone, achieving decomposition yields ranging from 84.7% to 99.9%. pH evolution during the oxidation process influences PAH degradation, with alkaline conditions favoring lower elimination rates. Fourier-transform infrared (FTIR) spectroscopy analysis indicates significant elimination of PAHs after treatment, with both oxidants showing comparable efficacy in complete hydrocarbon degradation. The mechanisms of PAH degradation by H2O2 and the Fenton process involve hydroxyl radical formation, with the latter exhibiting greater efficiency due to Fe2+ catalysis. Gaussian process regression (GPR) modeling accurately predicts reduced concentration, with optimized ARD-Exponential kernel function demonstrating superior performance. The Improved Grey Wolf Optimizer algorithm facilitates optimization of reaction conditions, yielding a high degree of agreement between experimental and predicted values. A MATLAB 2022b interface is developed for efficient optimization and prediction of C/C0, a critical parameter in PAH degradation studies. This integrated approach offers insights into optimizing the efficiency of oxidant-based PAH remediation techniques, with potential applications in contaminated soil remediation
    corecore