1 research outputs found

    Informatics-Driven Design of Superhard B–C–O Compounds

    No full text
    Materials containing B, C, and O, due to the advantages of forming strong covalent bonds, may lead to materials that are superhard, i.e., those with a Vicker’s hardness larger than 40 GPa. However, the exploration of this vast chemical, compositional, and configurational space is nontrivial. Here, we leverage a combination of machine learning (ML) and first-principles calculations to enable and accelerate such a targeted search. The ML models first screen for potentially superhard B–C–O compositions from a large hypothetical B–C–O candidate space. Atomic-level structure search using density functional theory (DFT) within those identified compositions, followed by further detailed analyses, unravels on four potentially superhard B–C–O phases exhibiting thermodynamic, mechanical, and dynamic stability
    corecore