368 research outputs found

    Phase-Quantized Block Noncoherent Communication

    Full text link
    Analog-to-digital conversion (ADC) is a key bottleneck in scaling DSP-centric receiver architectures to multiGigabit/s speeds. Recent information-theoretic results, obtained under ideal channel conditions (perfect synchronization, no dispersion), indicate that low-precision ADC (1-4 bits) could be a suitable choice for designing such high speed systems. In this work, we study the impact of employing low-precision ADC in a {\it carrier asynchronous} system. Specifically, we consider transmission over the block noncoherent Additive White Gaussian Noise (AWGN) channel, and investigate the achievable performance under low-precision output quantization. We focus attention on an architecture in which the receiver quantizes {\it only the phase} of the received signal: this has the advantage of being implementable without automatic gain control, using multiple 1-bit ADCs preceded by analog multipliers. For standard uniform Phase Shift Keying (PSK) modulation, we study the structure of the transition density of the resulting phase-quantized block noncoherent channel. Several results, based on the symmetry inherent in the channel model, are provided to characterize this transition density. Low-complexity procedures for computing the channel capacity, and for block demodulation, are obtained using these results. Numerical computations are performed to compare the performance of quantized and unquantized systems, for different quantization precisions, and different block lengths. It is observed, for example, that with QPSK modulation, 8-bin phase quantization of the received signal recovers about 80-85% of the capacity attained with unquantized observations, while 12-bin phase quantization recovers more than 90% of the unquantized capacity. Dithering the constellation is shown to improve the performance in the face of drastic quantization

    Interference management and capacity analysis for mm-wave picocells in urban canyons

    Full text link
    Millimeter (mm) wave picocellular networks are a promising approach for delivering the 1000-fold capacity increase required to keep up with projected demand for wireless data: the available bandwidth is orders of magnitude larger than that in existing cellular systems, and the small carrier wavelength enables the realization of highly directive antenna arrays in compact form factor, thus drastically increasing spatial reuse. In this paper, we carry out an interference analysis for mm-wave picocells in an urban canyon with a dense deployment of base stations. Each base station sector can serve multiple simultaneous users, which implies that both intra- and inter-cell interference must be managed. We propose a \textit{cross-layer} approach to interference management based on (i) suppressing interference at the physical layer and (ii) managing the residual interference at the medium access control layer. We provide an estimate of network capacity and establish that 1000-fold increase relative to conventional LTE cellular networks is indeed feasible

    Compressive spectral embedding: sidestepping the SVD

    Full text link
    Spectral embedding based on the Singular Value Decomposition (SVD) is a widely used "preprocessing" step in many learning tasks, typically leading to dimensionality reduction by projecting onto a number of dominant singular vectors and rescaling the coordinate axes (by a predefined function of the singular value). However, the number of such vectors required to capture problem structure grows with problem size, and even partial SVD computation becomes a bottleneck. In this paper, we propose a low-complexity it compressive spectral embedding algorithm, which employs random projections and finite order polynomial expansions to compute approximations to SVD-based embedding. For an m times n matrix with T non-zeros, its time complexity is O((T+m+n)log(m+n)), and the embedding dimension is O(log(m+n)), both of which are independent of the number of singular vectors whose effect we wish to capture. To the best of our knowledge, this is the first work to circumvent this dependence on the number of singular vectors for general SVD-based embeddings. The key to sidestepping the SVD is the observation that, for downstream inference tasks such as clustering and classification, we are only interested in using the resulting embedding to evaluate pairwise similarity metrics derived from the euclidean norm, rather than capturing the effect of the underlying matrix on arbitrary vectors as a partial SVD tries to do. Our numerical results on network datasets demonstrate the efficacy of the proposed method, and motivate further exploration of its application to large-scale inference tasks.Comment: NIPS 201

    Cooperative localization using angle of arrival measurements: sequential algorithms and non-line-of-sight suppression

    Full text link
    We investigate localization of a source based on angle of arrival (AoA) measurements made at a geographically dispersed network of cooperating receivers. The goal is to efficiently compute accurate estimates despite outliers in the AoA measurements due to multipath reflections in non-line-of-sight (NLOS) environments. Maximal likelihood (ML) location estimation in such a setting requires exhaustive testing of estimates from all possible subsets of "good" measurements, which has exponential complexity in the number of measurements. We provide a randomized algorithm that approaches ML performance with linear complexity in the number of measurements. The building block for this algorithm is a low-complexity sequential algorithm for updating the source location estimates under line-of-sight (LOS) environments. Our Bayesian framework can exploit the ability to resolve multiple paths in wideband systems to provide significant performance gains over narrowband systems in NLOS environments, and easily extends to accommodate additional information such as range measurements and prior information about location.Comment: 31 pages, 11 figures, related to MELT'08 Workshop proceedin

    Noncoherent compressive channel estimation for mm-wave massive MIMO

    Full text link
    Millimeter (mm) wave massive MIMO has the potential for delivering orders of magnitude increases in mobile data rates, with compact antenna arrays providing narrow steerable beams for unprecedented levels of spatial reuse. A fundamental technical bottleneck, however, is rapid spatial channel estimation and beam adaptation in the face of mobility and blockage. Recently proposed compressive techniques which exploit the sparsity of mm wave channels are a promising approach to this problem, with overhead scaling linearly with the number of dominant paths and logarithmically with the number of array elements. Further, they can be implemented with RF beamforming with low-precision phase control. However, these methods make implicit assumptions on long-term phase coherence that are not satisfied by existing hardware. In this paper, we propose and evaluate a noncoherent compressive channel estimation technique which can estimate a sparse spatial channel based on received signal strength (RSS) alone, and is compatible with off-the-shelf hardware. The approach is based on cascading phase retrieval (i.e., recovery of complex-valued measurements from RSS measurements, up to a scalar multiple) with coherent compressive estimation. While a conventional cascade scheme would multiply two measurement matrices to obtain an overall matrix whose entries are in a continuum, a key novelty in our scheme is that we constrain the overall measurement matrix to be implementable using coarsely quantized pseudorandom phases, employing a virtual decomposition of the matrix into a product of measurement matrices for phase retrieval and compressive estimation. Theoretical and simulation results show that our noncoherent method scales almost as well with array size as its coherent counterpart, thus inheriting the scalability and low overhead of the latter

    Robust Wireless Fingerprinting via Complex-Valued Neural Networks

    Full text link
    A "wireless fingerprint" which exploits hardware imperfections unique to each device is a potentially powerful tool for wireless security. Such a fingerprint should be able to distinguish between devices sending the same message, and should be robust against standard spoofing techniques. Since the information in wireless signals resides in complex baseband, in this paper, we explore the use of neural networks with complex-valued weights to learn fingerprints using supervised learning. We demonstrate that, while there are potential benefits to using sections of the signal beyond just the preamble to learn fingerprints, the network cheats when it can, using information such as transmitter ID (which can be easily spoofed) to artificially inflate performance. We also show that noise augmentation by inserting additional white Gaussian noise can lead to significant performance gains, which indicates that this counter-intuitive strategy helps in learning more robust fingerprints. We provide results for two different wireless protocols, WiFi and ADS-B, demonstrating the effectiveness of the proposed method.Comment: Accepted at IEEE Global Communications Conference (Globecom) 201

    Newtonized Orthogonal Matching Pursuit: Frequency Estimation over the Continuum

    Full text link
    We propose a fast sequential algorithm for the fundamental problem of estimating frequencies and amplitudes of a noisy mixture of sinusoids. The algorithm is a natural generalization of Orthogonal Matching Pursuit (OMP) to the continuum using Newton refinements, and hence is termed Newtonized OMP (NOMP). Each iteration consists of two phases: detection of a new sinusoid, and sequential Newton refinements of the parameters of already detected sinusoids. The refinements play a critical role in two ways: (1) sidestepping the potential basis mismatch from discretizing a continuous parameter space, (2) providing feedback for locally refining parameters estimated in previous iterations. We characterize convergence, and provide a Constant False Alarm Rate (CFAR) based termination criterion. By benchmarking against the Cramer Rao Bound, we show that NOMP achieves near-optimal performance under a variety of conditions. We compare the performance of NOMP with classical algorithms such as MUSIC and more recent Atomic norm Soft Thresholding (AST) and Lasso algorithms, both in terms of frequency estimation accuracy and run time.Comment: Submitted to IEEE Transactions on Signal Processing (TSP

    Joint Routing and Resource Allocation for Millimeter Wave Picocellular Backhaul

    Full text link
    Picocellular architectures are essential for providing the spatial reuse required to satisfy the ever-increasing demand for mobile data. A key deployment challenge is to provide backhaul connections with sufficiently high data rate. Providing wired support (e.g., using optical fiber) to pico base stations deployed opportunistically on lampposts and rooftops is impractical, hence wireless backhaul becomes an attractive approach. A multihop mesh network comprised of directional millimeter wave links is considered here for this purpose. The backhaul design problem is formulated as one of joint routing and resource allocation, accounting for mutual interference across simultaneously active links. A computationally tractable formulation is developed by leveraging the localized nature of interference and the provable existence of a sparse optimal allocation. Numerical results are provided for millimeter (mm) wave mesh networks, which are well suited for scaling backhaul data rates due to abundance of spectrum, and the ability to form highly directional, electronically steerable beams

    Combating Adversarial Attacks Using Sparse Representations

    Full text link
    It is by now well-known that small adversarial perturbations can induce classification errors in deep neural networks (DNNs). In this paper, we make the case that sparse representations of the input data are a crucial tool for combating such attacks. For linear classifiers, we show that a sparsifying front end is provably effective against β„“βˆž\ell_{\infty}-bounded attacks, reducing output distortion due to the attack by a factor of roughly K/NK / N where NN is the data dimension and KK is the sparsity level. We then extend this concept to DNNs, showing that a "locally linear" model can be used to develop a theoretical foundation for crafting attacks and defenses. Experimental results for the MNIST dataset show the efficacy of the proposed sparsifying front end.Comment: Accepted at ICLR Workshop 201
    • …
    corecore