3 research outputs found
INDOOR AIR QUALITY: DEVELOPING GOVERNANCE POLICIES AND REGULATIONS
This paper is part of a project conducted by Abu Dhabi Public Health Center (ADPHC). The project is part of the Health Sector Strategy, Wellness and Prevention theme, identified as ‘Community Risks and Environmental Health,’ within the Abu Dhabi strategic master plan goal.
This initiative is also linked to the Abu Dhabi Emirate Environmental Vision 2030 and the Abu Dhabi plan goal 18: ‘Sustainable Environment and Optimal Exploitation of Resources to preserve the Natural Heritage,’ coordinated by the Environment Agency—Abu Dhabi (EAD), where EAD is leading on several initiatives aimed at improving air quality, marine water quality, community noise management, and response to climate change. ADPHC is leading the project of Indoor Air Quality (IAQ), which aims to improve indoor air quality and health governance, policies and regulations, and strategic and operational planning.
For the purposes of this project, IAQ is defined as the totality of attributes of indoor air that affect a person’s health and well-being. The project addressed IAQ in residential settings; public spaces such as school, government, retail, and corporate buildings; and workplace settings such as offices and other public, government, or corporate buildings where people work. The project did not address occupational exposure to hazardous airborne chemical substances, such as exposures in industrial, agricultural, or construction occupations, as addressing such pollutants would require different research settings.
Understanding IAQ and controlling indoor air pollutants is important to protect public health. Sources of indoor air pollutants include building materials, tobacco products, cleaning supplies, cooling systems, moisture, and outdoor sources such as radon or pesticides. If ventilation inside a building is inadequate, these pollutants can build up in indoor air to levels that can have immediate or long-term health consequence
Epidemiology and antimicrobial resistance trends of Acinetobacter species in the United Arab Emirates: a retrospective analysis of 12 years of national AMR surveillance data
Introduction: Acinetobacter spp., in particular A. baumannii, are opportunistic pathogens linked to nosocomial pneumonia (particularly ventilator-associated pneumonia), central-line catheter-associated blood stream infections, meningitis, urinary tract infections, surgical-site infections, and other types of wound infections. A. baumannii is able to acquire or upregulate various resistance determinants, making it frequently multidrug-resistant, and contributing to increased mortality and morbidity. Data on the epidemiology, levels, and trends of antimicrobial resistance of Acinetobacter spp. in clinical settings is scarce in the Gulf Cooperation Council (GCC) and Middle East and North Africa (MENA) regions. Methods: A retrospective 12-year analysis of 17,564 non-duplicate diagnostic Acinetobacter spp. isolates from the United Arab Emirates (UAE) was conducted. Data was generated at 317 surveillance sites by routine patient care during 2010-2021, collected by trained personnel and reported by participating surveillance sites to the UAE National AMR Surveillance program. Data analysis was conducted with WHONET. Results: Species belonging to the A. calcoaceticus-baumannii complex were mostly reported (86.7%). They were most commonly isolated from urine (32.9%), sputum (29.0%), and soft tissue (25.1%). Resistance trends to antibiotics from different classes during the surveillance period showed a decreasing trend. Specifically, there was a significant decrease in resistance to imipenem, meropenem, and amikacin. Resistance was lowest among Acinetobacter species to both colistin and tigecycline. The percentages of multidrug-resistant (MDR) and possibly extensively drug-resistant (XDR) isolates was reduced by almost half between the beginning of the study in 2010 and its culmination in 2021. Carbapenem-resistant Acinetobacter spp. (CRAB) was associated with a higher mortality (RR: 5.7), a higher admission to ICU (RR 3.3), and an increased length of stay (LOS; 13 excess inpatient days per CRAB case), as compared to Carbapenem-susceptible Acinetobacter spp. Conclusion: Carbapenem-resistant Acinetobacter spp. are associated with poorer clinical outcomes, and higher associated costs, as compared to carbapenem-susceptible Acinetobacter spp. A decreasing trend of MDR Acinetobacter spp., as well as resistance to all antibiotic classes under surveillance was observed during 2010 to 2021. Further studies are needed to explore the reasons and underlying factors leading to this remarkable decrease of resistance over time
Epidemiology and antimicrobial resistance of Mycobacterium spp. in the United Arab Emirates: a retrospective analysis of 12 years of national antimicrobial resistance surveillance data
Introduction: The Eastern Mediterranean Regional Office (EMRO) region accounts for almost 8% of all global Mycobacterium tuberculosis (TB) cases, with TB incidence rates ranging from 1 per 100,000 per year in the United Arab Emirates (UAE) to 204 per 100,000 in Djibouti. The national surveillance data from the Middle East and North Africa (MENA) region on the epidemiology and antimicrobial resistance trends of TB, including MDR-TB remains scarce. Methods: A retrospective 12-year analysis of N = 8,086 non-duplicate diagnostic Mycobacterium tuberculosis complex (MTB complex) isolates from the UAE was conducted. Data were generated through routine patient care during the 2010–2021 years, collected by trained personnel and reported by participating surveillance sites to the UAE National Antimicrobial Resistance (AMR) Surveillance program. Data analysis was conducted with WHONET, a windows-based microbiology laboratory database management software developed by the World Health Organization Collaborating Center for Surveillance of Antimicrobial Resistance, Boston, United States (https://whonet.org/). Results: A total of 8,086 MTB-complex isolates were analyzed. MTB-complex was primarily isolated from respiratory samples (sputum 80.1%, broncho-alveolar lavage 4.6%, pleural fluid 4.1%). Inpatients accounted for 63.2%, including 1.3% from ICU. Nationality was known for 84.3% of patients, including 3.8% Emiratis. Of UAE non-nationals, 80.5% were from 110 countries, most of which were Asian countries. India accounted for 20.8%, Pakistan 13.6%, Philippines 12.7%, and Bangladesh 7.8%. Rifampicin-resistant MTB-complex isolates (RR-TB) were found in 2.8% of the isolates, resistance to isoniazid, streptomycin, pyrazinamide, and ethambutol, was 8.9, 6.9, 3.4 and 0.4%, respectively. A slightly increasing trend of resistance among MTB-complex was observed for rifampicin from 2.5% (2010) to 2.8% (2021). Conclusion: Infections due to MTB-complex are relatively uncommon in the United Arab Emirates compared to other countries in the MENA region. Most TB patients in the UAE are of Asian origin, mainly from countries with a high prevalence of TB. Resistance to first line anti-tuberculous drugs is generally low, however increasing trends for MDR-TB mainly rifampicin linked resistance is a major concern. MDR-TB was not associated with a higher mortality, admission to ICU, or increased length of hospitalization as compared to non-MDR-TB