181 research outputs found

    Improving small-scale CMB lensing reconstruction

    Get PDF
    Over the past decade, the gravitational lensing of the Cosmic Microwave Background (CMB) has become a powerful tool for probing the matter distribution in the Universe. The standard technique used to reconstruct the CMB lensing signal employs the quadratic estimator (QE) method, which has recently been shown to be suboptimal for lensing measurements on very small scales in temperature and polarization data. We implement a simple, more optimal method for the small-scale regime, which involves taking the direct inverse of the background gradient. We derive new techniques to make continuous maps of lensing using this "Gradient-Inversion" (GI) method and validate our method with simulated data, finding good agreement with predictions. For idealized simulations of lensing cross- and autospectra that neglect foregrounds, we demonstrate that our method performs significantly better than previous quadratic estimator methods in temperature; at L=5000−9000L=5000-9000, it reduces errors on the lensing auto-power spectrum by a factor of ∼4\sim 4 for both idealized CMB-S4 and Simons Observatory-like experiments and by a factor of ∼2.6\sim 2.6 for cross-correlations of CMB-S4-like lensing reconstruction and the true lensing field. We caution that the level of the neglected small-scale foreground power, while low in polarization, is very high in temperature; though we briefly outline foreground mitigation methods, further work on this topic is required. Nevertheless, our results show the future potential for improved small-scale CMB lensing measurements, which could provide stronger constraints on cosmological parameters and astrophysics at high redshifts

    Current dark matter annihilation constraints from CMB and low-redshift data

    Get PDF
    Updated constraints on the dark matter cross section and mass are presented combining cosmic microwave background (CMB) power spectrum measurements from Planck, WMAP9, ACT, and SPT as well as several low-redshift data sets (BAO, HST, and supernovae). For the CMB data sets, we combine WMAP9 temperature and polarization data for l ≤ 431 with Planck temperature data for 432 ≤ l ≤ 2500, ACT and SPT data for l > 2500, and Planck CMB four-point lensing measurements. We allow for redshift-dependent energy deposition from dark matter annihilation by using a “universal" energy absorption curve. We also include an updated treatment of the excitation, heating, and ionization energy fractions and provide an updated deposition efficiency factors (f[subscript eff]) for 41 different dark matter models. Assuming perfect energy deposition (f[subscript eff] = 1) and a thermal cross section, dark matter masses below 26 GeV are excluded at the 2σ level. Assuming a more generic efficiency of f[subscript eff] = 0.2, thermal dark matter masses below 5 GeV are disfavored at the 2σ level. These limits are a factor of ∼2 improvement over those from WMAP9 data alone. These current constraints probe, but do not exclude, dark matter as an explanation for reported anomalous indirect detection observations from AMS-02/PAMELA and the Fermi gamma-ray inner-Galaxy data. They also probe relevant models that would explain anomalous direct detection events from CDMS, CRESST, CoGeNT, and DAMA, as originating from a generic thermal weakly interacting massive particle. Projected constraints from the full Planck release should improve the current limits by another factor of ∼2 but will not definitely probe these signals. The proposed CMB Stage IV experiment will more decisively explore the relevant regions and improve upon the Planck constraints by another factor of ∼2.Stony Brook University-Brookhaven National Laboratory (Research Initiatives Seed Grant 37298, Project 1111593)United States. Dept. of Energy (Cooperative Research Agreement Contract DE-FG02-05ER41360
    • …
    corecore