19 research outputs found

    Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores

    Get PDF
    The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA's Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061(T). 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061(T). Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061(T) and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061(T). This cluster of five genes is considered to be an especially promising target for future experimental work

    Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Community acquired (CA) methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear.</p> <p>Results</p> <p>We sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Children's Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from <it>S. epidermidis</it>. The USA300 sequence was aligned with other sequenced <it>S. aureus </it>genomes and regions unique to USA300 MRSA were identified.</p> <p>Conclusion</p> <p>USA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.</p

    Bacillus pumilus SAFR-032 Genome Revisited: Sequence Update and Re-Annotation

    No full text
    Bacillus pumilus strain SAFR-032 is a non-pathogenic spore-forming bacterium exhibiting an anomalously high persistence in bactericidal environments. In its dormant state, it is capable of withstanding doses of ultraviolet (UV) radiation or hydrogen peroxide, which are lethal for the vast majority of microorganisms. This unusual resistance profile has made SAFR-032 a reference strain for studies of bacterial spore resistance. The complete genome sequence of B. pumilus SAFR-032 was published in 2007 early in the genomics era. Since then, the SAFR-032 strain has frequently been used as a source of genetic/genomic information that was regarded as representative of the entire B. pumilus species group. Recently, our ongoing studies of conservation of gene distribution patterns in the complete genomes of various B. pumilus strains revealed indications of misassembly in the B. pumilus SAFR-032 genome. Synteny-driven local genome resequencing confirmed that the original SAFR-032 sequence contained assembly errors associated with long sequence repeats. The genome sequence was corrected according to the new findings. In addition, a significantly improved annotation is now available. Gene orders were compared and portions of the genome arrangement were found to be similar in a wide spectrum of Bacillus strains

    Bacillus safensis FO-36b and Bacillus pumilusSAFR-032: a whole genome comparison of two spacecraft assembly facility isolates

    No full text
    Bacillus strains producing highly resistant spores have been isolated from cleanrooms and space craft assembly facilities. Organisms that can survive such conditions merit planetary protection concern and if that resistance can be transferred to other organisms, a health concern too. To further efforts to understand these resistances, the complete genome of Bacillus safensis strain FO-36b, which produces spores resistant to peroxide and radiation was determined. The genome was compared to the complete genome of B. pumilus SAFR-032, and the draft genomes of B. safensis JPL-MERTA-8-2 and the type strain B. pumilusATCC7061T. Additional comparisons were made to 61 draft genomes that have been mostly identified as strains of B. pumilus or B. safensis

    Evaluation of Acquired Antibiotic Resistance in Escherichia coli Exposed to Long-Term Low-Shear Modeled Microgravity and Background Antibiotic Exposure

    No full text
    Stress factors experienced during space include microgravity, sleep deprivation, radiation, isolation, and microbial contamination, all of which can promote immune suppression (1, 2). Under these conditions, the risk of infection from opportunistic pathogens increases significantly, particularly during long-term missions (3). If infection occurs, it is important that the infectious agent should not be antibiotic resistant. Minimizing the occurrence of antibiotic resistance is, therefore, highly desirable. To facilitate this, it is important to better understand the long-term response of bacteria to the microgravity environment. This study demonstrated that the use of antibiotics as a preventive measure could be counterproductive and would likely result in persistent resistance to that antibiotic. In addition, unintended resistance to other antimicrobials might also occur as well as permanent genome changes that might have other unanticipated and undesirable consequences.The long-term response of microbial communities to the microgravity environment of space is not yet fully understood. Of special interest is the possibility that members of these communities may acquire antibiotic resistance. In this study, Escherichia coli cells were grown under low-shear modeled microgravity (LSMMG) conditions for over 1,000 generations (1000G) using chloramphenicol treatment between cycles to prevent contamination. The results were compared with data from an earlier control study done under identical conditions using steam sterilization between cycles rather than chloramphenicol. The sensitivity of the final 1000G-adapted strain to a variety of antibiotics was determined using Vitek analysis. In addition to resistance to chloramphenicol, the adapted strain acquired resistance to cefalotin, cefuroxime, cefuroxime axetil, cefoxitin, and tetracycline. In fact, the resistance to chloramphenicol and cefalotin persisted for over 110 generations despite the removal of both LSMMG conditions and trace antibiotic exposure. Genome sequencing of the adapted strain revealed 22 major changes, including 3 transposon-mediated rearrangements (TMRs). Two TMRs disrupted coding genes (involved in bacterial adhesion), while the third resulted in the deletion of an entire segment (14,314 bp) of the genome, which includes 14 genes involved with motility and chemotaxis. These results are in stark contrast with data from our earlier control study in which cells grown under the identical conditions without antibiotic exposure never acquired antibiotic resistance. Overall, LSMMG does not appear to alter the antibiotic stress resistance seen in microbial ecosystems not exposed to microgravity

    Synteny violations between the complete genomes of <i>B</i>. <i>pumilus</i> SAFR-032 (CP000813.1) and other <i>B</i>. <i>pumilus</i> strains.

    No full text
    <p>Only <i>de novo</i> assembled genomes of <i>B</i>. <i>pumilus</i> strains were considered. Multiple genome alignments were performed with the Progressive Mauve Aligner [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0157331#pone.0157331.ref034" target="_blank">34</a>]. The aligned segments of interest were further evaluated with BLASTN and visualized using Easyfig [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0157331#pone.0157331.ref035" target="_blank">35</a>]. Genes within homologous syntenic blocks are colored with the same color except transposase, rRNA and tRNA genes, which are colored in blue, magenta and red, respectively, regardless of their belonging. Perfectly syntenic gene clusters present in all aligned genomes in the same orientation are shown in black. (A) <i>dnaA</i> (BPUM_0001)—<i>metS</i> (BPUM_0022) genome fragment. (B) <i>gpmB</i> (BPUM_0834)—<i>cspB</i> (BPUM_0862) genome fragment.</p

    Comparative genome analysis of complete <i>B</i>. <i>pumilus</i> genomes.

    No full text
    <p>Multiple genome alignments were performed with Progressive Mauve Aligner [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0157331#pone.0157331.ref034" target="_blank">34</a>]. Related segments have the same color in all aligned genomes. Inverted segments are shown below a genome's center line. Only the first 950,000 bp of each genome are shown for the entire alignment (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0157331#pone.0157331.s002" target="_blank">S2 Fig</a>). Both <i>de novo</i> and reference-driven genome assemblies are presented. The problematic genome fragments are marked with black triangles.</p

    The adaptation of Escherichia coli cells grown in simulated microgravity for an extended period is both phenotypic and genomic

    No full text
    Microorganisms impact spaceflight in a variety of ways. They play a positive role in biological systems, such as waste water treatment but can be problematic through buildups of biofilms that can affect advanced life support. Of special concern is the possibility that during extended missions, the microgravity environment will provide positive selection for undesirable genomic changes. Such changes could affect microbial antibiotic sensitivity and possibly pathogenicity. To evaluate this possibility, Escherichia coli (lac plus) cells were grown for over 1000 generations on Luria Broth medium under low-shear modeled microgravity conditions in a high aspect rotating vessel. This is the first study of its kind to grow bacteria for multiple generations over an extended period under low-shear modeled microgravity. Comparisons were made to a non-adaptive control strain using growth competitions. After 1000 generations, the final low-shear modeled microgravity-adapted strain readily outcompeted the unadapted lac minus strain. A portion of this advantage was maintained when the low-shear modeled microgravity strain was first grown in a shake flask environment for 10, 20, or 30 generations of growth. Genomic sequencing of the 1000 generation strain revealed 16 mutations. Of the five changes affecting codons, none were neutral. It is not clear how significant these mutations are as individual changes or as a group. It is concluded that part of the long-term adaptation to low-shear modeled microgravity is likely genomic. The strain was monitored for acquisition of antibiotic resistance by VITEK analysis throughout the adaptation period. Despite the evidence of genomic adaptation, resistance to a variety of antibiotics was never observed
    corecore