7,146 research outputs found

    Winning Cores in Parity Games

    Full text link
    We introduce the novel notion of winning cores in parity games and develop a deterministic polynomial-time under-approximation algorithm for solving parity games based on winning core approximation. Underlying this algorithm are a number properties about winning cores which are interesting in their own right. In particular, we show that the winning core and the winning region for a player in a parity game are equivalently empty. Moreover, the winning core contains all fatal attractors but is not necessarily a dominion itself. Experimental results are very positive both with respect to quality of approximation and running time. It outperforms existing state-of-the-art algorithms significantly on most benchmarks

    Min-Max Theorems for Packing and Covering Odd (u,v)(u,v)-trails

    Full text link
    We investigate the problem of packing and covering odd (u,v)(u,v)-trails in a graph. A (u,v)(u,v)-trail is a (u,v)(u,v)-walk that is allowed to have repeated vertices but no repeated edges. We call a trail odd if the number of edges in the trail is odd. Let ν(u,v)\nu(u,v) denote the maximum number of edge-disjoint odd (u,v)(u,v)-trails, and τ(u,v)\tau(u,v) denote the minimum size of an edge-set that intersects every odd (u,v)(u,v)-trail. We prove that τ(u,v)≤2ν(u,v)+1\tau(u,v)\leq 2\nu(u,v)+1. Our result is tight---there are examples showing that τ(u,v)=2ν(u,v)+1\tau(u,v)=2\nu(u,v)+1---and substantially improves upon the bound of 88 obtained in [Churchley et al 2016] for τ(u,v)/ν(u,v)\tau(u,v)/\nu(u,v). Our proof also yields a polynomial-time algorithm for finding a cover and a collection of trails satisfying the above bounds. Our proof is simple and has two main ingredients. We show that (loosely speaking) the problem can be reduced to the problem of packing and covering odd (uv,uv)(uv,uv)-trails losing a factor of 2 (either in the number of trails found, or the size of the cover). Complementing this, we show that the odd-(uv,uv)(uv,uv)-trail packing and covering problems can be tackled by exploiting a powerful min-max result of [Chudnovsky et al 2006] for packing vertex-disjoint nonzero AA-paths in group-labeled graphs

    APDs as Single-Photon Detectors for Visible and Near-Infrared Wavelenghts down to Hz Rates

    Full text link
    For the SPECTRAP experiment at GSI, Germany, detectors with Single-Photon counting capability in the visible and near-infrared regime are required. For the wavelength region up to 1100 nm we investigate the performance of 2x2 mm^2 avalanche photo diodes (APDs) of type S0223 manufactured by Radiation Monitoring Devices. To minimize thermal noise, the APDs are cooled to approximately -170 deg. C using liquid nitrogen. By operating the diodes close to the breakdown voltage it is possible to achieve relative gains in excess of 2x10^4. Custom-made low noise preamplifiers are used to read out the devices. The measurements presented in this paper have been obtained at a relative gain of 2.2x10^4. At a discriminator threshold of 6 mV the resulting dark count rate is in the region of 230/s. With these settings the studied APDs are able to detect single photons at 628 nm wavelength with a photo detection efficiency of (67+-7)%. Measurements at 1020 nm wavelength have been performed using the attenuated output of a grating spectrograph with a light bulb as photon source. With this setup the photo detection efficiency at 1020 nm has been determined to be (13+-3)%, again at a threshold of 6 mV.Comment: 14 pages, 9 figures, submitted to Journal of Instrumentatio

    Higgs Properties and BSM Higgs Boson Searches at the LHC

    Get PDF
    At the end of 2008, the Large Hadron Collider (LHC) will come into operation and the two experiments ATLAS and CMS will start taking data from proton-proton collisions at a center-of-mass energy of sqrt{s}=14 TeV. In preparation for the data taking period, the discovery potential for Higgs bosons beyond the Standard Model has been updated by both experiments and is reviewed here. In addition, the prospects for measuring the properties of a Higgs boson like its mass and width, its CP eigenvalues and its couplings to fermions and gauge bosons are discussed

    Assessing the Quality of Regulatory Impact Analyses

    Get PDF
    This study provides the most comprehensive evaluation of the quality of recent economic analyses that agencies conduct before finalizing major regulations. We construct a new dataset that includes analyses of forty-eight major health, safety, and environmental regulations from mid-1996 to mid-1999. This dataset provides detailed information on a variety of issues, including an agency's treatment of benefits, costs, net benefits, discounting, and uncertainty. We use this dataset to assess the quality of recent economic analyses and to determine the extent to which they are consistent with President Clinton's Executive Order 12866 and the benefit-cost guidelines issued by the Office of Management and Budget (OMB). We find that economic analyses prepared by regulatory agencies typically do not provide enough information to make decisions that will maximize the efficiency or effectiveness of a rule. Agencies quantified net benefits for only 29 percent of the rules. Agencies failed to discuss alternatives in 27 percent of the rules and quantified costs and benefits of alternatives in only 31 percent of the rules. Our findings strongly suggest that agencies generally failed to comply with the executive order and adhere to the OMB guidelines. We offer specific suggestions for improving the quality of analysis and the transparency of the regulatory process, including writing clear executive summaries, making analyses available on the Internet, providing more careful consideration of alternatives to a regulation, and estimating net benefits of a regulation when data on costs and benefits are provided.

    A direct optical method for the study of grain boundary melting

    Full text link
    The structure and evolution of grain boundaries underlies the nature of polycrystalline materials. Here we describe an experimental apparatus and light reflection technique for measuring disorder at grain boundaries in optically clear material, in thermodynamic equilibrium. The approach is demonstrated on ice bicrystals. Crystallographic orientation is measured for each ice sample. The type and concentration of impurity in the liquid can be controlled and the temperature can be continuously recorded and controlled over a range near the melting point. The general methodology is appropriate for a wide variety of materials.Comment: 8 pages, 8 figures, updated with minor changes made to published versio

    APDs as Single-Photon Detectors for Visible and Near-Infrared Wavelenghts down to Hz Rates

    Full text link
    For the SPECTRAP experiment at GSI, Germany, detectors with Single-Photon counting capability in the visible and near-infrared regime are required. For the wavelength region up to 1100 nm we investigate the performance of 2x2 mm^2 avalanche photo diodes (APDs) of type S0223 manufactured by Radiation Monitoring Devices. To minimize thermal noise, the APDs are cooled to approximately -170 deg. C using liquid nitrogen. By operating the diodes close to the breakdown voltage it is possible to achieve relative gains in excess of 2x10^4. Custom-made low noise preamplifiers are used to read out the devices. The measurements presented in this paper have been obtained at a relative gain of 2.2x10^4. At a discriminator threshold of 6 mV the resulting dark count rate is in the region of 230/s. With these settings the studied APDs are able to detect single photons at 628 nm wavelength with a photo detection efficiency of (67+-7)%. Measurements at 1020 nm wavelength have been performed using the attenuated output of a grating spectrograph with a light bulb as photon source. With this setup the photo detection efficiency at 1020 nm has been determined to be (13+-3)%, again at a threshold of 6 mV.Comment: 14 pages, 9 figures, submitted to Journal of Instrumentatio

    APDs as Single-Photon Detectors for Visible and Near-Infrared Wavelenghts down to Hz Rates

    Full text link
    For the SPECTRAP experiment at GSI, Germany, detectors with Single-Photon counting capability in the visible and near-infrared regime are required. For the wavelength region up to 1100 nm we investigate the performance of 2x2 mm^2 avalanche photo diodes (APDs) of type S0223 manufactured by Radiation Monitoring Devices. To minimize thermal noise, the APDs are cooled to approximately -170 deg. C using liquid nitrogen. By operating the diodes close to the breakdown voltage it is possible to achieve relative gains in excess of 2x10^4. Custom-made low noise preamplifiers are used to read out the devices. The measurements presented in this paper have been obtained at a relative gain of 2.2x10^4. At a discriminator threshold of 6 mV the resulting dark count rate is in the region of 230/s. With these settings the studied APDs are able to detect single photons at 628 nm wavelength with a photo detection efficiency of (67+-7)%. Measurements at 1020 nm wavelength have been performed using the attenuated output of a grating spectrograph with a light bulb as photon source. With this setup the photo detection efficiency at 1020 nm has been determined to be (13+-3)%, again at a threshold of 6 mV.Comment: 14 pages, 9 figures, submitted to Journal of Instrumentatio
    • …
    corecore