25 research outputs found

    Age related changes in skeletal muscle mass and function

    Get PDF
    The loss of muscle mass with age (Sarcopenia) has received growing attention over the past decade. Despite efforts to provide a universal definition with clinically meaningful cut-off points for diagnosis, there is no clear consensus on how to best quantify and assess the impact of loss of muscle mass and function on functional limitations. Whilst most previous studies have used dual energy x-ray absorptiometry (DXA) to quantify this loss, chapter 2 of this thesis shows that DXA underestimates the loss of muscle mass with age in comparison to the gold standard MRI. Muscle mass per se is not enough to determine whether a person has an exceptionally low muscle mass, as it can be readily seen that a healthy tall person will have a larger muscle mass than a small person. Clinicians and researchers thus need an index of muscle mass that takes differences in stature into account and also gives an objective cut off point to define low muscle mass. In Chapter3, we show that femur volume does not significantly differ between young and old. We used this observation to introduce a new index: thigh muscle mass normalised to femur volume, or the muscle to bone ratio. This index allows the examination of the true extent of muscle atrophy within an individual. In previous studies the appendicular lean mass (determined with DXA) divided by height squared appeared to be a relatively poor predictor of functional performance. In Chapter 4, the index introduced in Chapter 3, the muscle to bone ratio, proved to be a somewhat better predictor of functional performance in the overall cohort. This was, however, not true when examining the intra-group relationships. A similar situation applied to the maximal muscle strength. In older adults, the parameter which predicted functional performance best was muscle power per body mass, measured during a counter-movement jump. Chapter 5 shows that part of the larger loss power and force than muscle mass is attributable to a left-ward shift of the torque-frequency relationship, indicative of a slowing of the muscle, and reduction in maximal voluntary activation, as assessed using the interpolated twitch technique in older adults. Chapter 5 also shows that the fatigue resistance during a series of intermittent contractions was similar in young and older adults. However, older adults could sustain a 50% maximal voluntary contraction force longer than young people. Part of this discrepancy maybe due to an age-related slowing of the muscle

    Tendinous tissue properties after short and long-term functional overload: Differences between controls, 12 weeks and 4 years of resistance training.

    Get PDF
    AIM: The potential for tendinous tissues to adapt to functional overload, especially after several years of exposure to heavy resistance training is largely unexplored. This study compared the morphological and mechanical characteristics of the patellar tendon and knee-extensor tendon-aponeurosis complex between young men exposed to long-term (4 years; n=16), short-term (12 weeks; n=15) and no (untrained controls; n=39) functional overload in the form of heavy resistance training. METHODS: Patellar tendon cross-sectional area, vastus-lateralis aponeurosis area and quadriceps femoris volume, plus patellar tendon stiffness and Young's modulus, and tendon-aponeurosis complex stiffness, were quantified with MRI, dynamometry and ultrasonography. RESULTS: As expected long-term trained had greater muscle strength and volume (+58% and +56% vs untrained, both P<0.001), as well as a greater aponeurosis area (+17% vs untrained, P<0.01), but tendon cross-sectional area (mean and regional) was not different between groups. Only long-term trained had reduced patellar tendon elongation/strain over the whole force/stress range, whilst both short-term and long-term overload groups had similarly greater stiffness/Young's modulus at high force/stress (short-term +25/22%, and long-term +17/23% vs untrained; all P<0.05). Tendon-aponeurosis complex stiffness was not different between groups (ANOVA, P = 0.149). CONCLUSION: Despite large differences in muscle strength and size, years of resistance training did not induce tendon hypertrophy. Both short-term and long-term overload, demonstrated similar increases in high force mechanical and material stiffness, but reduced elongation/strain over the whole force/stress range occurred only after years of overload, indicating a force/strain specific time-course to these adaptations. This article is protected by copyright. All rights reserved

    Tendinous tissue adaptation to explosive- vs. sustained-contraction strength training

    Get PDF
    © 2018 Massey, Balshaw, Maden-Wilkinson, Tillin and Folland. The effect of different strength training regimes, and in particular training utilizing brief explosive contractions, on tendinous tissue properties is poorly understood. This study compared the efficacy of 12 weeks of knee extensor explosive-contraction (ECT; n = 14) vs. sustained-contraction (SCT; n = 15) strength training vs. a non-training control (n = 13) to induce changes in patellar tendon and knee extensor tendon-aponeurosis stiffness and size (patellar tendon, vastus-lateralis aponeurosis, quadriceps femoris muscle) in healthy young men. Training involved 40 isometric knee extension contractions (three times/week): gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT), or briefly contracting as fast as possible to ~80% MVT (ECT). Changes in patellar tendon stiffness and Young's modulus, tendon-aponeurosis complex stiffness, as well as quadriceps femoris muscle volume, vastus-lateralis aponeurosis area and patellar tendon cross-sectional area were quantified with ultrasonography, dynamometry, and magnetic resonance imaging. ECT and SCT similarly increased patellar tendon stiffness (20% vs. 16%, both p < 0.05 vs. control) and Young's modulus (22% vs. 16%, both p < 0.05 vs. control). Tendon-aponeurosis complex high-force stiffness increased only after SCT (21%; p < 0.02), while ECT resulted in greater overall elongation of the tendon-aponeurosis complex. Quadriceps muscle volume only increased after sustained-contraction training (8%; p = 0.001), with unclear effects of strength training on aponeurosis area. The changes in patellar tendon cross-sectional area after strength training were not appreciably different to control. Our results suggest brief high force muscle contractions can induce increased free tendon stiffness, though SCT is needed to increase tendon-aponeurosis complex stiffness and muscle hypertrophy

    Muscle size and strength : debunking the “completely separate phenomena” suggestion

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in European Journal of Applied Physiology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00421-017-3616-

    The need for exercise sciences and an integrated response to COVID-19: A position statement from the international HL-PIVOT network

    Get PDF
    COVID-19 is one of the biggest health crises that the world has seen. Whilst measures to abate transmission and infection are ongoing, there continues to be growing numbers of patients requiring chronic support, which is already putting a strain on health care systems around the world and which may do so for years to come. A legacy of COVID-19 will be a long-term requirement to support patients with dedicated rehabilitation and support services. With many clinical settings characterized by a lack of funding and resources, the need to provide these additional services could overwhelm clinical capacity. This position statement from the Healthy Living for Pandemic Event Protection (HL-PIVOT) Network provides a collaborative blueprint focused on leading research and developing clinical guidelines, bringing together professionals with expertise in clinical services and the exercise sciences to develop the evidence base needed to improve outcomes for patients infected by COVID-19

    Changes in agonist neural drive, hypertrophy and pre-training strength all contribute to the individual strength gains after resistance training.

    Get PDF
    PURPOSE: Whilst neural and morphological adaptations following resistance training (RT) have been investigated extensively at a group level, relatively little is known about the contribution of specific physiological mechanisms, or pre-training strength, to the individual changes in strength following training. This study investigated the contribution of multiple underpinning neural [agonist EMG (QEMGMVT), antagonist EMG (HEMGANTAG)] and morphological variables [total quadriceps volume (QUADSVOL), and muscle fascicle pennation angle (QUADSθ p)], as well as pre-training strength, to the individual changes in strength after 12 weeks of knee extensor RT. METHODS: Twenty-eight healthy young men completed 12 weeks of isometric knee extensor RT (3/week). Isometric maximum voluntary torque (MVT) was assessed pre- and post-RT, as were simultaneous neural drive to the agonist (QEMGMVT) and antagonist (HEMGANTAG). In addition QUADSVOL was determined with MRI and QUADSθ p with B-mode ultrasound. RESULTS: Percentage changes (∆) in MVT were correlated to ∆QEMGMVT (r = 0.576, P = 0.001), ∆QUADSVOL (r = 0.461, P = 0.014), and pre-training MVT (r = -0.429, P = 0.023), but not ∆HEMGANTAG (r = 0.298, P = 0.123) or ∆QUADSθ p (r = -0.207, P = 0.291). Multiple regression analysis revealed 59.9% of the total variance in ∆MVT after RT to be explained by ∆QEMGMVT (30.6%), ∆QUADSVOL (18.7%), and pre-training MVT (10.6%). CONCLUSIONS: Changes in agonist neural drive, quadriceps muscle volume and pre-training strength combined to explain the majority of the variance in strength changes after knee extensor RT (~60%) and adaptations in agonist neural drive were the most important single predictor during this short-term intervention

    Fast and ballistic contractions involve greater neuromuscular power production in older adults during resistance exercise

    No full text
    Purpose:  Neuromuscular power is critical for healthy ageing. Conventional older adult resistance training (RT) guidelines typically recommend lifting slowly (2-s; CONV), whereas fast/explosive contractions performed either non-ballistically (FAST-NB) or ballistically (FAST-B, attempting to throw the load) may involve greater acute power production, and could ultimately provide a greater chronic power adaptation stimulus. To compare the neuromechanics (power, force, velocity, and muscle activation) of different types of concentric isoinertial RT contractions in older adults.  Methods:  Twelve active older adult males completed three sessions, each randomly assigned to one type of concentric contraction (CONV or FAST-NB or FAST-B). Each session involved lifting a range of loads (20–80%1RM) using an instrumented isoinertial leg press dynamometer that measured power, force, and velocity. Muscle activation was assessed with surface electromyography (sEMG).  Results:  Peak and mean power were markedly different, according to the concentric contraction explosive intent FAST-B > FAST-NB > CONV, with FAST-B producing substantially more power (+ 49 to 1172%, P ≤ 0.023), force (+ 10 to 136%, P Conclusions:  FAST-B contractions produced markedly greater power, force, velocity and muscle activation across a range of loads than both CONV or FAST-NB and could provide a more potent RT stimulus for the chronic development of older adult power.</p
    corecore