8 research outputs found

    Promising pre-clinical validation of targeted radionuclide therapy using a [131I] labelled iodoquinoxaline derivative for an effective melanoma treatment

    Full text link
    Targeted internal radionuclide therapy (TRT) would be an effective alternative to current therapies for dissemi- nated melanoma treatment. At our institution, a class of iodobenzamides has been developed as potent melanoma- seeking agents. This review described the preclinical vali- dations of a quinoxaline derivative molecule (ICF01012) as tracer for TRT application. It was selected for its high, specific and long-lasting uptake in tumour with rapid clear- ance from non-target organs providing suitable dosimetry parameters for TRT. Extended in vivo study of metabolic profiles confirmed durable tumoural concentration of the unchanged molecule form. Moreover melanin specificity of ICF01012 was determined by binding assay with syn- thetic melanin and in vivo by SIMS imaging. Then, we showed in vivo that [131I] ICF01012 treatment drastically inhibited growth of B16F0, B16Bl6 and M4Beu tumours whereas [131I] NaI or unlabelled ICF01012 treatment was without significant effect. Histological analysis showed that residual tumour cells exhibit a significant loss of aggres- siveness after treatment. This anti-tumoural effect was associated with a lengthening of the treated-mice survival time and an inhibition of lung dissemination for B16Bl6 model. Results presented here support the concept of TRT using a [131I] labelled iodoquinoxaline derivative for an effective melanoma treatment.<br /

    Protein metabolism in the small intestine during cancer cachexia and chemotherapy in mice

    No full text
    International audienc
    corecore