3 research outputs found

    RAGE contributes to allergen driven severe neutrophilic airway inflammation via NLRP3 inflammasome activation in mice

    Get PDF
    BackgroundAsthma is a major public healthcare burden, affecting over 300 million people worldwide. While there has been great progress in the treatment of asthma, subsets of patients who present with airway neutrophilia, often have more severe disease, and tend to be resistant to conventional corticosteroid treatments. The receptor for advanced glycation endproducts (RAGE) plays a central role in the pathogenesis of eosinophilic asthma, however, it’s role in neutrophilic asthma remains largely uninvestigated.MethodsA mouse model of severe steroid resistant neutrophilic airway disease (SSRNAD) using the common fungal allergen Alternaria alternata (AA) was employed to evaluate the effects of genetic ablation of RAGE and pharmacological inhibition of the NLRP3 inflammasome on neutrophilic airway inflammation.ResultsAA exposure induced robust neutrophil-dominant airway inflammation and increased BALF levels of Th1/Th17 cytokines in wild-type mice, which was significantly reduced in RAGE-/- mice. Serum levels of IgE and IgG1 were increased similarly in both wild-type and RAGE-/- mice. Pharmacological inhibition of NLRP3 blocked the effects of AA exposure and NLRP3 inflammasome activation was RAGE-dependent. Neutrophil extracellular traps were elevated in the BALF of wild-type but not RAGE-/- mice and an atypical population of SiglecF+ neutrophils were identified in the BALF. Lastly, time-course studies found that RAGE expression promoted sustained neutrophil accumulation in the BALF of mice in response to AA

    DataSheet_1_Exacerbated lung inflammation following secondary RSV exposure is CD4+ T cell-dependent and is not mitigated in infant BALB/c mice born to PreF-vaccinated dams.pdf

    No full text
    Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations due to bronchiolitis in children under 5 years of age. Moreover, severe RSV disease requiring hospitalization is associated with the subsequent development of wheezing and asthma. Due to the young age in which viral protection is needed and risk of vaccine enhanced disease following direct infant vaccination, current approaches aim to protect young children through maternal immunization strategies that boost neutralizing maternal antibody (matAb) levels. However, there is a scarcity of studies investigating the influence of maternal immunization on secondary immune responses to RSV in the offspring or whether the subsequent development of wheezing and asthma is mitigated. Toward this goal, our lab developed a murine model of maternal RSV vaccination and repeat RSV exposure to evaluate the changes in immune response and development of exacerbated lung inflammation on secondary RSV exposure in mice born to immunized dams. Despite complete protection following primary RSV exposure, offspring born to pre-fusion F (PreF)-vaccinated dams had exaggerated secondary ILC2 and Th2 responses, characterized by enhanced production of IL-4, IL-5, and IL-13. These enhanced type 2 cellular responses were associated with exaggerated airway eosinophilia and mucus hyperproduction upon re-exposure to RSV. Importantly, depletion of CD4+ T cells led to complete amelioration of the observed type 2 pathology on secondary RSV exposure. These unanticipated results highlight the need for additional studies that look beyond primary protection to better understand how maternal immunization shapes subsequent immune responses to repeat RSV exposure.</p
    corecore