538 research outputs found

    RXTE Hard X-ray Observation of A754: Constraining the Hottest Temperature Component and the Intracluster Magnetic Field

    Full text link
    Abell 754, a cluster undergoing merging, was observed in hard X-rays with the Rossi X-ray Timing Explorer (RXTE) in order to constrain its hottest temperature component and search for evidence of nonthermal emission. Simultaneous modeling of RXTE data and those taken with previous missions yields an average intracluster temperature of 9\sim 9 keV in the 1-50 keV energy band. A multi-temperature component model derived from numerical simulations of the evolution of a cluster undergoing a merger produces similar quality of fit, indicating that the emission measure from the very hot gas component is sufficiently small that it renders the two models indistinguishable. No significant nonthermal emission was detected. However, our observations set an upper limit of 7.1×1014ergs/(cm2skeV)7.1 \times 10^{-14} ergs/(cm^2 s keV) (90% confidence limit) to the nonthermal emission flux at 20 keV. Combining this result with the radio synchrotron emission flux we find a lower limit of 0.2 μ\muG for the intracluster magnetic field. We discuss the implications of our results for the theories of magnetic field amplifications in cluster mergers.Comment: Accepted for Publication in the Astrophysical Journal, 22 pages, 5 figure

    A Novel Approach in Constraining Electron Spectra in Blazar Jets: The Case of Markarian 421

    Full text link
    We report results from the observations of the well studied TeV blazar Mrk 421 with the Swift and the Suzaku satellites in December 2008. During the observation, Mrk 421 was found in a relatively low activity state, with the corresponding 2-10 keV flux of 3×10103 \times 10^{-10} erg/s/cm^2. For the purpose of robust constraining the UV-to-X-ray emission continuum we selected only the data corresponding to truly simultaneous time intervals between Swift and Suzaku, allowing us to obtain a good-quality, broad-band spectrum despite a modest length (0.6 ksec) exposure. We analyzed the spectrum with the parametric forward-fitting SYNCHROTRON model implemented in XSPEC assuming two different representations of the underlying electron energy distribution, both well motivated by the current particle acceleration models: a power-law distribution above the minimum energy γmin\gamma_{\rm min} with an exponential cutoff at the maximum energy γmax\gamma_{\rm max}, and a modified ultra-relativistic Maxwellian with an equilibrium energy γeq\gamma_{\rm eq}. We found that the latter implies unlikely physical conditions within the blazar zone of Mrk 421. On the other hand, the exponentially moderated power-law electron distribution gives two possible sets of the model parameters: (i) flat spectrum dNe/dγγ1.91dN'_e/d\gamma \propto \gamma^{-1.91} with low minimum electron energy γmin<103\gamma_{\rm min}<10^3, and (ii) steep spectrum γ2.77\propto \gamma^{-2.77} with high minimum electron energy γmin2×104\gamma_{\rm min}\simeq 2\times10^4. We discuss different interpretations of both possibilities in the context of a diffusive acceleration of electrons at relativistic, sub- or superluminal shocks. We also comment on how exactly the gamma-ray data can be used to discriminate between the proposed different scenarios.Comment: 18 pages, 2 figures; accepted for publication in the Astrophysical Journa
    corecore