20 research outputs found

    Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell–cell contacts in mammalian epithelial cells

    Get PDF
    Cooperation between cadherins and the actin cytoskeleton controls many aspects of epithelial biogenesis. We report here that myosin VI critically regulates the morphogenesis of epithelial cell–cell contacts. As epithelial monolayers mature in culture, discontinuous cell–cell contacts are initially replaced by continuous (cohesive) contacts. Myosin VI is recruited to cell contacts as they become linear and cohesive, where it forms a biochemical complex with epithelial cadherin (E-cadherin). Myosin VI is necessary for strong cadherin adhesion, for cells to form cohesive linear contacts, and for the integrity of the apical junctional complex. We find that vinculin mediates this effect of myosin VI. Myosin VI is necessary for vinculin and E-cadherin to interact. A combination of gain and loss of function approaches identifies vinculin as a downstream effector of myosin VI that is necessary for the integrity of intercellular contacts. We propose that myosin VI and vinculin form a molecular apparatus that generates cohesive cell–cell contacts in cultured mammalian epithelia

    Guidelines for whole genome bisulphite sequencing of intact and FFPET DNA on the Illumina HiSeq X Ten

    Get PDF
    Background: Comprehensive genome-wide DNA methylation profiling is critical to gain insights into epigenetic reprogramming during development and disease processes. Among the different genome-wide DNA methylation technologies, whole genome bisulphite sequencing (WGBS) is considered the gold standard for assaying genome-wide DNA methylation at single base resolution. However, the high sequencing cost to achieve the optimal depth of coverage limits its application in both basic and clinical research. To achieve 15× coverage of the human methylome, using WGBS, requires approximately three lanes of 100-bp-paired-end Illumina HiSeq 2500 sequencing. It is important, therefore, for advances in sequencing technologies to be developed to enable cost-effective high-coverage sequencing. Results: In this study, we provide an optimised WGBS methodology, from library preparation to sequencing and data processing, to enable 16–20× genome-wide coverage per single lane of HiSeq X Ten, HCS 3.3.76. To process and analyse the data, we developed a WGBS pipeline (METH10X) that is fast and can call SNPs. We performed WGBS on both high-quality intact DNA and degraded DNA from formalin-fixed paraffin-embedded tissue. First, we compared different library preparation methods on the HiSeq 2500 platform to identify the best method for sequencing on the HiSeq X Ten. Second, we optimised the PhiX and genome spike-ins to achieve higher quality and coverage of WGBS data on the HiSeq X Ten. Third, we performed integrated whole genome sequencing (WGS) and WGBS of the same DNA sample in a single lane of HiSeq X Ten to improve data output. Finally, we compared methylation data from the HiSeq 2500 and HiSeq X Ten and found high concordance (Pearson r > 0.9×). Conclusions: Together we provide a systematic, efficient and complete approach to perform and analyse WGBS on the HiSeq X Ten. Our protocol allows for large-scale WGBS studies at reasonable processing time and cost on the HiSeq X Ten platform.Shalima S. Nair, Phuc-Loi Luu, Wenjia Qu, Madhavi Maddugoda, Lily Huschtscha, Roger Reddel, Georgia Chenevix-Trench, Martina Toso, James G. Kench, Lisa G. Horvath, Vanessa M. Hayes, Phillip D. Stricker, Timothy P. Hughes, Deborah L. White, John E. J. Rasko, Justin J.-L. Wong and Susan J. Clar

    A Myo6 Mutation Destroys Coordination between the Myosin Heads, Revealing New Functions of Myosin VI in the Stereocilia of Mammalian Inner Ear Hair Cells

    Get PDF
    Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser hair bundles include mislocalization of the kinocilia and branching of stereocilia. Transfection of GFP-labeled myosin VI into epithelial cells and delivery of endocytic vesicles to the early endosome revealed that the mutant phenotype displays disrupted motor function. The actin-activated ATPase rates measured for the D179Y mutation are decreased, and indicate loss of coordination of the myosin VI heads or ‘gating’ in the dimer form. Proper coordination is required for walking processively along, or anchoring to, actin filaments, and is apparently destroyed by the proximity of the mutation to the nucleotide-binding pocket. This loss of myosin VI function may not allow myosin VI to transport its cargoes appropriately at the base and within the stereocilia, or to anchor the membrane of stereocilia to actin filaments via its cargos, both of which lead to structural changes in the stereocilia of myosin VI–impaired hair cells, and ultimately leading to deafness

    The cerebellin 4 precursor gene is a direct target of SRY and SOX9 in mice

    No full text
    In most mammals, the expression of SRY (sex-determining region on the Y chromosome) initiates the development of testes, and thus determines the sex of the individual. However, despite the pivotal role of SRY, its mechanism of action remains elusive. One important missing piece of the puzzle is the identification of genes regulated by SRY. In this study we used chromatin immunoprecipitation to identify direct SRY target genes. Anti-mouse SRY antibody precipitated a region 7.5 kb upstream of the transcriptional start site of cerebellin 4 precursor (Cbln4), which encodes a secreted protein. Cbln4 is expressed in Sertoli cells in the developing gonad, with a profile mimicking that of the testis-determining gene SRY-box containing gene 9 (Sox9). In transgenic XY mouse embryos with reduced Sox9 expression, Cbln4 expression also was reduced, whereas overexpression of Sox9 in XX mice caused an upregulation of Cbln4 expression. Finally, ectopic upregulation of SRY in vivo resulted in ectopic expression of Cbln4. Our findings suggest that both SRY and SOX9 contribute to the male-specific upregulation of Cbln4 in the developing testis, and they identified a direct in vivo target gene of SRY

    Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal key epigenetic differences at developmental genes

    Get PDF
    Adipocytes support key metabolic and endocrine functions of adipose tissue. Lipid is stored in two major classes of depots, namely visceral adipose (VA) and subcutaneous adipose (SA) depots. Increased visceral adiposity is associated with adverse health outcomes, whereas the impact of SA tissue is relatively metabolically benign. The precise molecular features associated with the functional differences between the adipose depots are still not well understood. Here, we characterised transcriptomes and methylomes of isolated adipocytes from matched SA and VA tissues of individuals with normal BMI to identify epigenetic differences and their contribution to cell type and depot-specific function. We found that DNA methylomes were notably distinct between different adipocyte depots and were associated with differential gene expression within pathways fundamental to adipocyte function. Most striking differential methylation was found at transcription factor and developmental genes. Our findings highlight the importance of developmental origins in the function of different fat depots

    Cadherin Adhesion Receptors Orient the Mitotic Spindle during Symmetric Cell Division in Mammalian Epithelia

    No full text
    Oriented cell division is a fundamental determinant of tissue organization. Simple epithelia divide symmetrically in the plane of the monolayer to preserve organ structure during epithelial morphogenesis and tissue turnover. For this to occur, mitotic spindles must be stringently oriented in the Z-axis, thereby establishing the perpendicular division plane between daughter cells. Spatial cues are thought to play important roles in spindle orientation, notably during asymmetric cell division. The molecular nature of the cortical cues that guide the spindle during symmetric cell division, however, is poorly understood. Here we show directly for the first time that cadherin adhesion receptors are required for planar spindle orientation in mammalian epithelia. Importantly, spindle orientation was disrupted without affecting tissue cohesion or epithelial polarity. This suggests that cadherin receptors can serve as cues for spindle orientation during symmetric cell division. We further show that disrupting cadherin function perturbed the cortical localization of APC, a microtubule-interacting protein that was required for planar spindle orientation. Together, these findings establish a novel morphogenetic function for cadherin adhesion receptors to guide spindle orientation during symmetric cell division
    corecore