4 research outputs found
Changes in holopelagic Sargassum spp. biomass composition across an unusual year
The year 2021 marked a decade of holopelagic sargassum (morphotypes Sargassum natans I and VIII, and Sargassum fluitans III) stranding on the Caribbean and West African coasts. Beaching of millions of tons of sargassum negatively impacts coastal ecosystems, economies, and human health. Additionally, the La Soufrière volcano erupted in St. Vincent in April 2021, at the start of the sargassum season. We investigated potential monthly variations in morphotype abundance and biomass composition of sargassum harvested in Jamaica and assessed the influence of processing methods (shade-drying vs. frozen samples) and of volcanic ash exposure on biochemical and elemental components. S. fluitans III was the most abundant morphotype across the year. Limited monthly variations were observed for key brown algal components (phlorotannins, fucoxanthin, and alginate). Shade-drying did not significantly alter the contents of proteins but affected levels of phlorotannins, fucoxanthin, mannitol, and alginate. Simulation of sargassum and volcanic ash drift combined with age statistics suggested that sargassum potentially shared the surface layer with ash for ~50 d, approximately 100 d before stranding in Jamaica. Integrated elemental analysis of volcanic ash, ambient seawater, and sargassum biomass showed that algae harvested from August had accumulated P, Al, Fe, Mn, Zn, and Ni, probably from the ash, and contained less As. This ash fingerprint confirmed the geographical origin and drift timescale of sargassum. Since environmental conditions and processing methods influence biomass composition, efforts should continue to improve understanding, forecasting, monitoring, and valorizing sargassum, particularly as strandings of sargassum show no sign of abating
Pelagic Sargassum events in Jamaica : Provenance, morphotype abundance, and influence of sample processing on biochemical composition of the biomass
Pelagic Sargassum species have been known for centuries in the Sargasso Sea of the North Atlantic Ocean. In 2011, a new area concentrating high biomass of these brown algae started developing in the Tropical Atlantic Ocean. Since then, massive and recurrent Sargassum influxes have been reported in the Caribbean and off the coast of Western Africa. These Sargassum events have a major negative impact on coastal ecosystems and nearshore marine life, and affect socio-economic sectors, including public health, coastal living, tourism, fisheries, andmaritime transport. Despite recent advances in the forecasting of Sargassum events, and elucidation of the seaweed composition, many knowledge gaps remain, including morphotype abundance during Sargassum events, drift of the seaweeds in the months prior to stranding, and influence of sample processing methods on biomass biochemical composition. Using seaweeds harvested on the coasts of Jamaica in summer of 2020,we observed that S. fluitans III was themost abundantmorphotype at different times and sampling locations. No clear difference in the geographical origin, or provenance, of the Sargassummats was observed. Themajority of Sargassumbacktracked fromboth north and south of Jamaica experienced ambient temperatures of around 27 °C and salinity in the range of 34–36 psu before stranding.We also showed that cheap (sun) compared to expensive (freeze) drying techniques influence the biochemical composition of biomass. Sun-drying increased the proportion of phenolic compounds, but had a deleterious impact on fucoxanthin content and on the quantities of monosaccharides, except for mannitol. Effects on the content of fucose containing sulfated polysaccharides depended on the method used for their extraction, and limited variation was observed in ash, protein, and fatty acid content within most of the sample locations investigated. These observations are important for the storage and transport of the biomass in the context of its valorisation
Changes in holopelagic Sargassum spp. biomass composition across an unusual year
The year 2021 marked a decade of holopelagic sargassum (morphotypes Sargassum natans I and VIII, and Sargassum fluitans III) stranding on the Caribbean and West African coasts. Beaching of millions of tons of sargassum negatively impacts coastal ecosystems, economies, and human health. Additionally, the La Soufrière volcano erupted in St. Vincent in April 2021, at the start of the sargassum season. We investigated potential monthly variations in morphotype abundance and biomass composition of sargassum harvested in Jamaica and assessed the influence of processing methods (shade-drying vs. frozen samples) and of volcanic ash exposure on biochemical and elemental components. S. fluitans III was the most abundant morphotype across the year. Limited monthly variations were observed for key brown algal components (phlorotannins, fucoxanthin, and alginate). Shade-drying did not significantly alter the contents of proteins but affected levels of phlorotannins, fucoxanthin, mannitol, and alginate. Simulation of sargassum and volcanic ash drift combined with age statistics suggested that sargassum potentially shared the surface layer with ash for ~50 d, approximately 100 d before stranding in Jamaica. Integrated elemental analysis of volcanic ash, ambient seawater, and sargassum biomass showed that algae harvested from August had accumulated P, Al, Fe, Mn, Zn, and Ni, probably from the ash, and contained less As. This ash fingerprint confirmed the geographical origin and drift timescale of sargassum. Since environmental conditions and processing methods influence biomass composition, efforts should continue to improve understanding, forecasting, monitoring, and valorizing sargassum, particularly as strandings of sargassum show no sign of abating